language-icon Old Web
English
Sign In

Itō's lemma

In mathematics, Itô's lemma is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values. In mathematics, Itô's lemma is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values. Itô's lemma, which is named after Kiyosi Itô, is occasionally referred to as the Itô–Doeblin theorem in recognition of posthumously discovered work of Wolfgang Doeblin.

[ "Stochastic differential equation", "Applied mathematics", "Mathematical analysis", "Brownian motion" ]
Parent Topic
Child Topic
    No Parent Topic