Paroxysmal nocturnal haemoglobinuria

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired, life-threatening disease of the blood characterized by destruction of red blood cells by the complement system, a part of the body's innate immune system. This destructive process occurs due to the presence of defective surface protein DAF on the red blood cell, which normally functions to inhibit such immune reactions. Since the complement cascade attacks the red blood cells within the blood vessels of the circulatory system, the red blood cell destruction (hemolysis) is considered an intravascular hemolytic anemia. Other key features of the disease, such as the high incidence of blood clot formation, are incompletely understood.peripheral: Purine nucleoside phosphorylase deficiency Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired, life-threatening disease of the blood characterized by destruction of red blood cells by the complement system, a part of the body's innate immune system. This destructive process occurs due to the presence of defective surface protein DAF on the red blood cell, which normally functions to inhibit such immune reactions. Since the complement cascade attacks the red blood cells within the blood vessels of the circulatory system, the red blood cell destruction (hemolysis) is considered an intravascular hemolytic anemia. Other key features of the disease, such as the high incidence of blood clot formation, are incompletely understood. PNH is the only hemolytic anemia caused by an acquired (rather than inherited) intrinsic defect in the cell membrane (deficiency of glycophosphatidylinositol leading to the absence of protective proteins on the membrane). It may develop on its own ('primary PNH') or in the context of other bone marrow disorders such as aplastic anemia ('secondary PNH'). Only a minority of affected people have the telltale red urine in the morning that originally gave the condition its name. Allogeneic bone marrow transplantation is the only cure, but has significant rates of additional medical problems and death. The monoclonal antibody eculizumab reduces the need for blood transfusions and improves quality of life for those affected by PNH. Eculizumab dramatically alters the natural course of PNH, reducing symptoms and disease complications as well as improving survival to the extent that it may be equivalent to that of the general population. Eculizumab costs at least $440,000 for a single year of treatment and has been reported as one of the world's most expensive drugs. The classic sign of PNH is red discoloration of the urine due to the presence of hemoglobin and hemosiderin from the breakdown of red blood cells. As the urine is more concentrated in the morning, this is when the color is most pronounced. This phenomenon mainly occurs in those who have the primary form of PNH, who will notice this at some point in their disease course. The remainder mainly experience the symptoms of anemia, such as tiredness, shortness of breath, and palpitations. A small proportion of patients report attacks of abdominal pain, difficulty swallowing and pain during swallowing, as well as erectile dysfunction in men; this occurs mainly when the breakdown of red blood cells is rapid, and is attributable to spasm of smooth muscle due to depletion of nitric oxide by red cell breakdown products. Forty percent of people with PNH develop thrombosis (a blood clot) at some point in their illness. This is the main cause of severe complications and death in PNH. These may develop in common sites (deep vein thrombosis of the leg and resultant pulmonary embolism when these clots break off and enter the lungs), but in PNH blood clots may also form in more unusual sites: the hepatic vein (causing Budd-Chiari syndrome), the portal vein of the liver (causing portal vein thrombosis), the superior or inferior mesenteric vein (causing mesenteric ischemia) and veins of the skin. Cerebral venous thrombosis, an uncommon form of stroke, is more common in those with PNH. All cells have proteins attached to their membranes, often serving as a mode of communication or signaling between the cell and the surrounding environment. These signaling proteins are physically attached to the cell membrane in various ways, commonly anchored by glycolipids such as glycosyl phosphatidylinositols (GPI). PNH occurs as a result of a defect in the assembling of these glycolipid-protein structures on the surface of blood cells. The most common defective enzyme in PNH is phosphatidylinositol glycan A (PIGA), one of several enzymes needed to make GPI. The gene that codes for PIGA is located on the X chromosome, which means that only one active copy of the gene for PIGA is present in each cell (initially, females have two copies, but one is silenced through X-inactivation). A mutation in the PIGA gene can lead to the absence of GPI anchors expressed on the cell membrane. When this mutation occurs in a hematopoietic stem cell in the bone marrow, all of the cells it produces will also have the defect. Several of the proteins that anchor to GPI on the cell membrane are used to protect the cell from destruction by the complement system, and, without these anchors, the cells are more easily targeted by the complement proteins. Although red blood cells, white blood cells, and platelets are targeted by complement, red blood cells are particularly vulnerable to lysis. The complement system is part of the innate immune system and has a variety of functions, from destroying invading microorganisms by opsonization to direct destabilization by the membrane attack complex. The main proteins that protect blood cells from destruction are decay-accelerating factor (DAF/CD55), which disrupts formation of C3-convertase, and protectin (CD59/MIRL/MAC-IP), which binds the membrane attack complex and prevents C9 from binding to the cell.

[ "Diabetes mellitus", "Gastroenterology", "Pathology", "Immunology", "Internal medicine", "Sucrose haemolysis test", "Sugar-water test" ]
Parent Topic
Child Topic
    No Parent Topic