language-icon Old Web
English
Sign In

Triangular tiling

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.Scalene trianglep2 symmetryScalene trianglepmg symmetryIsosceles trianglecmm symmetryRight trianglecmm symmetryEquilateral trianglep6m symmetry In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}. Conway calls it a deltille, named from the triangular shape of the Greek letter delta (Δ). The triangular tiling can also be called a kishextille by a kis operation that adds a center point and triangles to replace the faces of a hextille. It is one of three regular tilings of the plane. The other two are the square tiling and the hexagonal tiling. There are 9 distinct uniform colorings of a triangular tiling. (Naming the colors by indices on the 6 triangles around a vertex: 111111, 111112, 111212, 111213, 111222, 112122, 121212, 121213, 121314) Three of them can be derived from others by repeating colors: 111212 and 111112 from 121213 by combining 1 and 3, while 111213 is reduced from 121314. There is one class of Archimedean colorings, 111112, (marked with a *) which is not 1-uniform, containing alternate rows of triangles where every third is colored. The example shown is 2-uniform, but there are infinitely many such Archimedean colorings that can be created by arbitrary horizontal shifts of the rows. The vertex arrangement of the triangular tiling is called an A2 lattice. It is the 2-dimensional case of a simplectic honeycomb. The A*2 lattice (also called A32) can be constructed by the union of all three A2 lattices, and equivalent to the A2 lattice. The vertices of the triangular tiling are the centers of the densest possible circle packing. Every circle is in contact with 6 other circles in the packing (kissing number). The packing density is ​π⁄√12 or 90.69%. The voronoi cell of a triangular tiling is a hexagon, and so the voronoi tessellation, the hexagonal tiling, has a direct correspondence to the circle packings. Triangular tilings can be made with the equivalent {3,6} topology as the regular tiling (6 triangles around every vertex). With identical faces (face-transitivity) and vertex-transitivity, there are 5 variations. Symmetry given assumes all faces are the same color.

[ "Substitution tiling", "Hexagonal tiling", "Square tiling" ]
Parent Topic
Child Topic
    No Parent Topic