language-icon Old Web
English
Sign In

Silviculture

Silviculture is the practice of controlling the growth, composition, health, and quality of forests to meet diverse needs and values.The origin of forestry in German-speaking Europe has defined silvicultural systems broadly as high forest (Hochwald), coppice with standards (Mittelwald) and compound coppice, short rotation coppice, and coppice (Niederwald). There are other systems as well. These varied silvicultural systems include several harvesting methods, which are often wrongly said to be a silvicultural systems, but may also be called rejuvenating or regenerating method depending on the purpose.Regeneration is basic to the continuation of forested, as well as to the afforestation of treeless land. Regeneration can take place through self-sown seed ('natural regeneration'), by artificially sown seed, or by planted seedlings. In whichever case, the performance of regeneration depends on its growth potential and the degree to which its environment allows the potential to be expressed. Seed, of course, is needed for all regeneration modes, both for natural or artificial sowing and for raising planting stock in a nursery.With a view to reducing the time needed to produce planting stock, experiments were carried out with white spruce and three other coniferous species from Wisconsin seed in the longer, frost-free growing season in Florida, 125 vs. 265 days in central Wisconsin and northern Florida, respectively. As the species studied are adapted to long photoperiods, extended daylengths of 20 hours were applied in Florida. Other seedlings were grown under extended daylength in Wisconsin and with natural daylength in both areas. After two growing seasons, white spruce under long days in Florida were about the same as those in Wisconsin, but twice as tall as plants under natural Wisconsin photoperiods. Under natural days in Florida, with the short local photoperiod, white spruce was severely dwarfed and had a low rate of survival. Black spruce responded similarly. After two growing seasons, long day plants of all 4 species in Florida were well balanced, with good development of both roots and shoots, equaling or exceeding the minimum standards for 2+1 and 2+2 outplanting stock of Lake States species. Their survival when lifted in February and outplanted in Wisconsin equalled that of 2+2 Wisconsin-grown transplants. Artificial extension of the photoperiod in the northern Lake States greatly increased height increment of white and black spruces in the second growing season.See Plant nurseryPlantations may be considered successful when outplant performance satisfies certain criteria. The term 'free growing' is applied in some jurisdictions. Ontario's 'Free-to-Grow' (FTG) equivalent relates to a forest stand that meets a minimum stocking standard and height requirement, and is essentially free of competition from surrounding vegetation that might impede growth. The FTG concept was introduced with the advent of the Forest Management Agreement program in Ontario in 1980 and became applicable to all management units in 1986. Policy, procedures, and methodologies readily applicable by forest unit managers to assess the effectiveness of regeneration programs were still under development during the Class Environmental Assessment hearings.Competition arises when individual organisms are sufficiently close together to incur growth constraint through mutual modification of the local environment. Plants may compete for light, moisture and nutrients, but seldom for space per se. Vegetation management directs more of the site's resources into usable forest products, rather than just eliminating all competing plants. Ideally, site preparation ameliorates competition to levels that relieve the outplant of constraints severe enough to cause prolonged check.Tending is the term applied to pre-harvest silvicultural treatment of forest crop trees at any stage after initial planting or seeding. The treatment can be of the crop itself (e.g., spacing, pruning, thinning, and improvement cutting) or of competing vegetation (e.g., weeding, cleaning).In discussing yields that might be expected from the Canadian spruce forests, Haddock (1961) noted that Wright's (1959) quotation of spruce yields in the British Isles of 220 cubic feet per acre (15.4 m3/ha) per year and in Germany of 175 cubic feet per acre (12.25 m3/ha) per year was misleading, at least if it was meant to imply that such yields might be approached in the Boreal Forest Region of Canada. Haddock thought that Wright's suggestion of 20 to 40 (average 30) cubic feet per acre (1.4 m3/ha to 2.8 m3/ha (average 2.1 m3/ha) per year was more reasonable, but still somewhat optimistic.Silvicultural regeneration methods combine both the harvest of the timber on the stand and re-establishment of the forest. The proper practice of sustainable forestry should mitigate the potential negative impacts, but all harvest methods will have some impacts on the land and residual stand. The practice of sustainable forestry limits the impacts such that the values of the forest are maintained in perpetuity. Silvicultural prescriptions are specific solutions to a specific set of circumstances and management objectives. Following are some common methods:A survey in 1955–56 to determine survival, development, and the reasons for success or failure of conifer pulpwood plantations (mainly of white spruce) in Ontario and Quebec up to 32 years old found that the bulk of the mortality occurred within the first 4 years of planting, unfavourable site and climate being the main causes of failure.Naturally regenerated trees in an understorey prior to harvesting constitute a classic case of good news and bad news. Understorey white spruce is of particular importance in mixedwoods dominated by aspen, as in the B15, B18a, and B19a Sections of Manitoba, and elsewhere. Until the latter part of the last century, white spruce understorey was mostly viewed as money in the bank on a long-term, low interest deposit, with final yield to be realized after slow natural succession, but the resource became increasingly threatened with the intensification of harvesting of aspen. White spruce plantations on mixedwood sites proved expensive, risky, and generally unsuccessful. This prompted efforts to see what might be done about growing aspen and white spruce on the same landbase by protecting existing white spruce advance growth, leaving a range of viable crop trees during the first cut, then harvesting both hardwoods and spruce in the final cut. Information about the understorey component is critical to spruce management planning. The ability of then current harvesting technology and crews employed to provide adequate protection for white spruce understories was questioned by Brace and Bella. Specialized equipment and training, perhaps with financial incentives, may be needed to develop procedures that would confer the degree of protection needed for the system to be feasible. Effective understorey management planning requires more than improved mixedwood inventory.Site preparation is any of various treatments applied to a site in order to ready it for seeding or planting. The purpose is to facilitate the regeneration of that site by the chosen method. Site preparation may be designed to achieve, singly or in any combination: improved access, by reducing or rearranging slash, and amelioration of adverse forest floor, soil, vegetation, or other biotic factors. Site preparation is undertaken to ameliorate one or more constraints that would otherwise be likely to thwart the objectives of management. A valuable bibliography on the effects of soil temperature and site preparation on subalpine and boreal tree species has been prepared by McKinnon et al. (2002).

[ "Ecology", "Agroforestry", "Forestry", "Patch cut", "Shelterwood cutting", "artificial regeneration", "Close to nature forestry", "Silviculturist" ]
Parent Topic
Child Topic
    No Parent Topic