language-icon Old Web
English
Sign In

Indoor positioning system

An indoor positioning system (IPS) is a system used to locate objects or people inside a building using lights, radio waves, magnetic fields, acoustic signals, or other sensory information. There are several commercial systems on the market, but there is no standard for an IPS system. An indoor positioning system (IPS) is a system used to locate objects or people inside a building using lights, radio waves, magnetic fields, acoustic signals, or other sensory information. There are several commercial systems on the market, but there is no standard for an IPS system. Indoor positioning systems use different technologies, including distance measurement to nearby anchor nodes (nodes with known fixed positions, e.g. WiFi / LiFi access points or Bluetooth beacons), magnetic positioning, dead reckoning. They either actively locate mobile devices and tags or provide ambient location or environmental context for devices to get sensed. The localized nature of an IPS has resulted in design fragmentation, with systems making use of various optical, radio, or even acoustictechnologies. For smoothing to compensate for stochastic (unpredictable) errors there must be a sound method for reducing the error budget significantly. The system might include information from other systems to cope for physical ambiguity and to enable error compensation. Detecting the device's orientation (often referred to as the compass direction in order to disambiguate it from smartphone vertical orientation) can be achieved either by detecting landmarks inside images taken in real time, or by using trilateration with beacons. There also exist technologies for detecting magnetometric information inside buildings or locations with steel structures or in iron ore mines. Due to the signal attenuation caused by construction materials, the satellite based Global Positioning System (GPS) loses significant power indoors affecting the required coverage for receivers by at least four satellites. In addition, the multiple reflections at surfaces cause multi-path propagation serving for uncontrollable errors. These very same effects are degrading all known solutions for indoor locating which uses electromagnetic waves from indoor transmitters to indoor receivers. A bundle of physical and mathematical methods are applied to compensate for these problems. Promising direction radio frequency positioning error correction opened by the use of alternative sources of navigational information, such as inertial measurement unit (IMU), monocular camera Simultaneous localization and mapping (SLAM) and WiFi SLAM. Integration of data from various navigation systems with different physical principles can increase the accuracy and robustness of the overall solution. Global navigation satellite systems (GPS or GNSS) are generally not suitable to establish indoor locations, since microwaves will be attenuated and scattered by roofs, walls and other objects. However, in order to make positioning signals ubiquitous, integration between GPS and indoor positioning can be made. Currently, GNSS receivers are becoming more and more sensitive due to increasing microchip processing power. High Sensitivity GNSS receivers are able to receive satellite signals in most indoor environments and attempts to determine the 3D position indoors have been successful. Besides increasing the sensitivity of the receivers, the technique of A-GPS is used, where the almanac and other information are transferred through a mobile phone.

[ "Computer hardware", "Computer vision", "Telecommunications", "Real-time computing", "Embedded system" ]
Parent Topic
Child Topic
    No Parent Topic