language-icon Old Web
English
Sign In

SIESTA (computer program)

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is an original method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids. SIESTA's efficiency stems from the use of strictly localized basis sets and from the implementation of linear-scaling algorithms which can be applied to suitable systems. A very important feature of the code is that its accuracy and cost can be tuned in a wide range, from quick exploratory calculations to highly accurate simulations matching the quality of other approaches, such as plane-wave and all-electron methods. SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is an original method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids. SIESTA's efficiency stems from the use of strictly localized basis sets and from the implementation of linear-scaling algorithms which can be applied to suitable systems. A very important feature of the code is that its accuracy and cost can be tuned in a wide range, from quick exploratory calculations to highly accurate simulations matching the quality of other approaches, such as plane-wave and all-electron methods. SIESTA's backronym is Spanish Initiative for Electronic Simulations with Thousands of Atoms. Since 13 May 2016, with the 4.0 version announcement, SIESTA is released under the terms of the GPL open-source license. Source packages and access to the development versions can be obtained from the new development and distribution platform.

[ "Ab initio quantum chemistry methods", "Ab initio", "ab initio molecular dynamics" ]
Parent Topic
Child Topic
    No Parent Topic