language-icon Old Web
English
Sign In

Quadratic field

In algebraic number theory, a quadratic field is an algebraic number field K of degree two over Q, the rational numbers. The map d ↦ Q(√d) is a bijection from the set of all square-free integers d ≠ 0, 1 to the set of all quadratic fields. If d > 0 the corresponding quadratic field is called a real quadratic field, and for d < 0 an imaginary quadratic field or complex quadratic field, corresponding to whether it is or not a subfield of the field of the real numbers. In algebraic number theory, a quadratic field is an algebraic number field K of degree two over Q, the rational numbers. The map d ↦ Q(√d) is a bijection from the set of all square-free integers d ≠ 0, 1 to the set of all quadratic fields. If d > 0 the corresponding quadratic field is called a real quadratic field, and for d < 0 an imaginary quadratic field or complex quadratic field, corresponding to whether it is or not a subfield of the field of the real numbers. Quadratic fields have been studied in great depth, initially as part of the theory of binary quadratic forms. There remain some unsolved problems. The class number problem is particularly important. For a nonzero square free integer d, the discriminant of the quadratic field K=Q(√d) is d if d is congruent to 1 modulo 4, and otherwise 4d. For example, if d is −1, then K is the field of Gaussian rationals and the discriminant is −4. The reason for such a distinction is that the ring of integers of K is generated by ½(1+√d) in the first case, but by √d in the second case. The set of discriminants of quadratic fields is exactly the set of fundamental discriminants. Any prime number p gives rise to an ideal pOK in the ring of integers OK of a quadratic field K.In line with general theory of splitting of prime ideals in Galois extensions, this may be The third case happens if and only if p divides the discriminant D. The first and second cases occur when the Kronecker symbol (D/p) equals −1 and +1, respectively. For example, if p is an odd prime not dividing D, then p splits if and only if D is congruent to a square modulo p. The first two cases are in a certain sense equally likely to occur as p runs through the primes, see Chebotarev density theorem. The law of quadratic reciprocity implies that the splitting behaviour of a prime p in a quadratic field depends only on p modulo D, where D is the field discriminant. A classical example of the construction of a quadratic field is to take the unique quadratic field inside the cyclotomic field generated by a primitive p-th root of unity, with p a prime number > 2. The uniqueness is a consequence of Galois theory, there being a unique subgroup of index 2 in the Galois group over Q. As explained at Gaussian period, the discriminant of the quadratic field is p for p = 4n + 1 and −p for p = 4n + 3. This can also be predicted from enough ramification theory. In fact p is the only prime that ramifies in the cyclotomic field, so that p is the only prime that can divide the quadratic field discriminant. That rules out the 'other' discriminants −4p and 4p in the respective cases. If one takes the other cyclotomic fields, they have Galois groups with extra 2-torsion, and so contain at least three quadratic fields. In general a quadratic field of field discriminant D can be obtained as a subfield of a cyclotomic field of D-th roots of unity. This expresses the fact that the conductor of a quadratic field is the absolute value of its discriminant, a special case of the conductor-discriminant formula.

[ "Quadratic form", "Quadratic equation", "The Imaginary", "Quadratic function", "Elliptic unit", "Solving quadratic equations with continued fractions", "Euler's criterion", "Gauss's lemma (number theory)", "Heegner number" ]
Parent Topic
Child Topic
    No Parent Topic