language-icon Old Web
English
Sign In

Titanium isotope

Naturally occurring titanium (22Ti) is composed of five stable isotopes; 46Ti, 47Ti, 48Ti, 49Ti and 50Ti with 48Ti being the most abundant (73.8% natural abundance). Twenty-one radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 60 years, 45Ti with a half-life of 184.8 minutes, 51Ti with a half-life of 5.76 minutes, and 52Ti with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lives that are less than 33 seconds, and the majority of these have half-lives that are less than half a second. Naturally occurring titanium (22Ti) is composed of five stable isotopes; 46Ti, 47Ti, 48Ti, 49Ti and 50Ti with 48Ti being the most abundant (73.8% natural abundance). Twenty-one radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 60 years, 45Ti with a half-life of 184.8 minutes, 51Ti with a half-life of 5.76 minutes, and 52Ti with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lives that are less than 33 seconds, and the majority of these have half-lives that are less than half a second. The isotopes of titanium range in atomic mass from 38.01 u (38Ti) to 62.99 u (63Ti). The primary decay mode before the most abundant stable isotope, 48Ti, is β+ and the primary mode after is β−. The primary decay products before 48Ti are scandium isotopes and the primary products after are vanadium isotopes. Titanium-44 is a radioactive isotope of titanium that undergoes electron capture to an excited state of scandium-44 with a half-life of 60 years, before the ground state of 44Sc and ultimately 44Ca are populated. Because titanium-44 can only undergo electron capture, its half-life increases with ionization and it becomes stable in its fully ionized state. Titanium-44 is produced in relative abundance the alpha process in stellar nucleosynthesis and the early stages of supernova explosions. The age of supernovae may be determined through measurements of gamma ray emissions from titanium-44 and its abundance. It was observed in the Cassiopeia A supernova remnant and SN 1987A at a relatively high concentration, a consequence of delayed decay resulting from ionizing conditions.

[ "Formation and evolution of the Solar System", "Chondrite", "Allende meteorite" ]
Parent Topic
Child Topic
    No Parent Topic