language-icon Old Web
English
Sign In

Collaborative mapping

Collaborative mapping is the aggregation of Web mapping and user-generated content, from a group of individuals or entities, and can take several distinct forms. With the growth of technology for storing and sharing maps, collaborative maps have become competitors to commercial services, in the case of OpenStreetMap, or components of them, as in Google Map Maker and Yandex.Map editor. Collaborative mapping is the aggregation of Web mapping and user-generated content, from a group of individuals or entities, and can take several distinct forms. With the growth of technology for storing and sharing maps, collaborative maps have become competitors to commercial services, in the case of OpenStreetMap, or components of them, as in Google Map Maker and Yandex.Map editor. Volunteers collect geographic information and the citizens/individuals can be regarded as sensors within a geographical environment that create, assemble, and disseminate geographic data provided voluntarily by the individuals. Collaborative mapping is a special case of the larger phenomenon known as crowd sourcing, that allows citizens to be part of collaborative approach to accomplish a goal. The goals in collaborative mapping have a geographical aspect, e.g. having a more active role in urban planning. Especially when data, information, knowledge is distributed in a population and an aggregation of data is not available, then collaborative mapping can bring a benefit for the citizens or activities in a community with an e-Planing Platform. Extensions of critical and participatory approaches to geographic information systems combines software tools with a joint activities to accomplish a community goal. Additionally, the aggregated data can be used for a Location-based service like available public transport options at the geolocation where a mobile device is currently used (GPS-sensor). The relevance for the user at a specific geolocation cannot be represented with logic value in general (relevant=true/false). The relevance can be represented with Fuzzy-Logic or a Fuzzy architectural spatial analysis. Collaborative mapping applications vary depending on which feature the collaborative edition takes place: on the map itself (shared surface), or on overlays to the map. A very simple collaborative mapping application would just plot users' locations (social mapping or geosocial networking) or Wikipedia articles' locations (Placeopedia). Collaborative implies the possibility of edition by several distinct individuals so the term would tend to exclude applications where the maps are not meant for the general user to modify. In this kind of application, the map itself is created collaboratively by sharing a common surface. For example, both OpenStreetMap and WikiMapia allow for the creation of single 'points of interest', as well as linear features and areas. Collaborative mapping and specifically surface sharing faces the same problems as revision control, namely concurrent access issues and versioning. In addition to these problems, collaborative maps must deal with the difficult issue of cluttering, due to the geometric constraints inherent in the media. One approach to this problem is using overlays, allowing to suitable use in consumer services. Despite these issues, collaborative mapping platforms such as OpenStreetMap can be considered as being as trustworthy as professionally produced maps Overlays group together items on a map, allowing the user of the map to toggle the overlay's visibility and thus all items contained in the overlay. The application uses map tiles from a third-party (for example one of the mapping APIs) and adds its own collaboratively edited overlays to them, sometimes in a wiki fashion. If each user's revisions are contained in an overlay, the issue of revision control and cluttering can be mitigated. One example of this is the accessibility platform Accessadvisr, which utilises collaborative mapping to inform persons of accessibility issues, which is perceived to be as reliable and trustworthy as professional information. Other overlays-based collaborative mapping tools follow a different approach and focus on user centered content creation and experience. There users enrich maps with their own points of interest and build kind of travel books for themselves. At the same time users can explore overlays of other users as collaborative extension. Humanitarian OpenStreetMap Team, based on OpenStreetMap, provides collaborative mapping support for humanitarian objectives, e.g. collaborative transportation map, epidemiological mapping for Malaria, earthquake response, or typhoon response.

[ "Cartography", "Data mining", "World Wide Web", "Data science", "Remote sensing" ]
Parent Topic
Child Topic
    No Parent Topic