language-icon Old Web
English
Sign In

Resilin

Resilin is an elastomeric protein found in many insects and other arthropods. It provides soft rubber-elasticity to mechanically active organs and tissue; for example, it enables insects of many species to jump or pivot their wings efficiently. Resilin was first discovered by Torkel Weis-Fogh in locust wing-hinges. Resilin is an elastomeric protein found in many insects and other arthropods. It provides soft rubber-elasticity to mechanically active organs and tissue; for example, it enables insects of many species to jump or pivot their wings efficiently. Resilin was first discovered by Torkel Weis-Fogh in locust wing-hinges. Resilin is currently the most efficient elastic protein known (Elvin et al., 2005). The elastic efficiency of the resilin isolated from locust tendon has been reported to be 97% (only 3% of stored energy is lost as heat). It does not have any regular structure but its randomly coiled chains are crosslinked by di- and tri-tyrosine links at the right spacing to confer the elasticity needed to propel some jumping insects distances up to 38 times their length (as found in fleas). Resilin must last for the lifetime of adult insects and must therefore operate for hundreds of millions of extensions and contractions; its elastic efficiency ensures performance during the insect's lifetime. Resilin exhibits unusual elastomeric behavior only when swollen in polar solvents such as water. In 2005, a recombinant form of the resilin protein of the fly Drosophila melanogaster was synthesized by expressing a part of the fly gene in the bacterium Escherichia coli. Active studies are investigating potential application of recombinant resilins in biomedical engineering and medicine. After its discovery in elastic tendons in dragon flies and wing hinges in locusts, resilin have been found in many structures and organs in arthropods. Resilin is often found as a composite with chitin in insects cuticle, where chitin serves as the structural component. Resilin provides elasticity and possibly other properties. It was discovered in the salivary pump of assassin bugs, in the feeding pumps of rhodnius prolixus, tsetse flies, reduviid bugs, and honey bees, and in the resistance providing mechanism for the venom-dispensing pump of honey bee. Resilin was also found in the sound production organs of arthropods, such as the Cicadae family and Pyralidae family, where both high elasticity and high resilience of resilin play important roles due to the rapid stress-release cycles of tymbals. Besides these structures, resilin exists most widely in the locomotion systems of arthropods. It was discovered in wing hinges to enable recovery from deformation of wing elements, and to dampen the aerodynamic forces felt by the wing; in ambulatory systems of cockroaches and flies to facilitate rapid joint deformation; in jumping mechanism, resilin stores kinetic energy with great efficiency and release upon unloading. It is also found in the cuticles surrounding abdomen regions of ants and bees, which expand and swell to a great extent during feeding and reproduction process. Amino acid composition in resilin was analyzed in 1961 by Bailey and Torkel Weis-Fogh when they observed samples of prealar arm and wing hinge ligaments of locusts. The result indicates that resilin lacks methionine, hydroxyproline, and cysteine constituents in its amino acid composition. Resilin was identified to be a product of the Drosophila melanogaster gene CG15920 due to the similarities between amino acid compositions of resilin and the gene product. The Drosophila melanogaster gene is composed of 4 exons, which encode for 4 functional segments in CG15920: signal peptide and 3 peptide encoded by exon 1, 2, and 3. The signal peptide guides pro-resilin into extracellular space, where resilin proteins aggregate and cross link to form a network, and then is cut off from the peptides, so that nascent resilin becomes mature resilin. From the N-terminal, segment encoded by exon 1 contains 18 copies of a 15-residue repeating sequence (GGRPSDSYGAPGGGN); segment corresponding to exon 2 contains 62 amino acids of the chitin-binding Rebers-Riddiford (R-R) consensus sequence (Pfam PF00379); exon 3 encoded peptide is dominated by 11 copies of a 13-residual repeating sequence (GYSGGRPGGQDLG). While enriched glycine and proline in exon 1 and 3 introduce cyclic structures into the protein, tyrosine residuals are able to form di- and tri-tyrosine cross-links between proteins. Resilin is a disordered protein; however its segments may take on secondary structures under different conditions. It is discovered that peptide sequence encoded by exon 1 exhibit an unstructured form and cannot be crystallized, which allows the peptide sequence segment to be very soft and highly flexible. Exon 3 encoded peptide takes on the unstructured form before loading, but transforms to an ordered beta-turn structure once stress is applied. Meanwhile, segment encoded by exon 2 serves as a chitin binding domain. It is proposed that as stress is applied, or there is energy input, exon 1 encoded peptide responds immediately due to its high flexibility. Once this occurs, the energy is passed onto exon 3 encoded peptide, which transforms from the unstructured form to beta-turn structure to store energy. Once the stress or energy is removed, exon 3 encoded segment reverses the structural transformation and outputs the energy to exon 1 encoded segment. Another secondary structure exon 1 and exon 3 corresponding peptides may take on is the polyproline helix (PPII), indicated by the high occurrence of proline and glycine in these 2 segments. The PPII structure widely exists in elastomeric proteins, such as abductin, elastin, and titin. It is believed to contribute in the self-assembling process and the elasticity of the protein. The elastic mechanism of resilin is proposed to be entropy related. Under relaxed state, the peptide is folded, and possesses a large entropy, but once it is stretched out, the entropy decreases as the peptide unfold. The coexistence of PPII and beta-turn play an important role of increasing entropy as resilin returns to its disordered form. The other function of PPII is to facilitate self-assembling process: it is found that the quasi-extended PPII is able to interact through an intermolecular reaction, and initiate the formation of fibrillar supramolecular structure. While the secondary structures are determined by energy state and hydrogen bonds formed between amino acids, hierarchical structures are determined by the hydrophobicity of the peptide. Exon 1 encoded peptide is mainly hydrophilic, and is more extended when immersed in water. In contrast, exon 3 encoded peptide contains both hydrophobic and hydrophilic blocks, suggesting the formation of micelles, where the hydrophobic block will cluster on the inside with the hydrophilic portion surrounding it. Thus, a single complete resilin protein, when immersed in water, takes on the structure in which exon 1 encoded segment extends out from the micelle exon 3 encoded peptide forms.

[ "Biochemistry", "Anatomy", "Composite material", "Elastin", "Cuticle", "Trityrosine" ]
Parent Topic
Child Topic
    No Parent Topic