In organic chemistry the Brook rearrangement refers to any carbon to oxygen silyl migration. The rearrangement was first observed in the late 1950s by Canadian chemist Adrian Gibbs Brook (1924–2013), after which the reaction is named. These migrations can be promoted in a number of different ways, including thermally, photolytically or under basic/acidic conditions. In the forward direction, these silyl migrations produce silyl ethers as products which is driven by the stability of the oxygen-silicon bond. In organic chemistry the Brook rearrangement refers to any carbon to oxygen silyl migration. The rearrangement was first observed in the late 1950s by Canadian chemist Adrian Gibbs Brook (1924–2013), after which the reaction is named. These migrations can be promoted in a number of different ways, including thermally, photolytically or under basic/acidic conditions. In the forward direction, these silyl migrations produce silyl ethers as products which is driven by the stability of the oxygen-silicon bond. The silyl substituents can be aliphatic or aromatic, and if the silicon is a center of chirality, the migration occurs with retention at this center. This migration occurs through a transition state where silicon is penta-coordinate and bears a partial negative charge. If a center of chirality is present at the carbon center to which the silyl group is attached, then inversion occurs at this center. As an example, if (trimethylsilyl)methanol where to be deprotonated, a -Brook rearrangement would occur. The reaction mechanism for this rearrangement depends on the conditions employed to affect the rearrangement and the nature of the starting material. Anionic rearrangements are the most common Brook rearrangements observed, and their mechanisms can be broken into two general categories. The first category starts with proton abstraction of a nearby hydroxyl group by a base. This generates an alkoxide which then acts as a nucleophile and attacks the silicon atom in a nucleophilic displacement reaction, with the methylene group acting as the leaving group. The generated carbanion is then protonated by the H-B species to form the product. In the case where the base used is consumed in the reaction (i.e. Butyllithium), then the carbanion can act as a base to deprotonate further starting material to generate the final product. The proposed transition state for this reaction step is a three-membered ring, with significant negative charge build-up on the carbon atom and the silicon atom, as demonstrated by Hammett sigma and rho studies. This reaction generally proceeds with a low activation energy and a large negative entropy of activation. This further supports the cyclic three member transition state, as this would be considerably more ordered than the ground state of the starting material. The reaction proceeds with overall retention at the silicon center, as demonstrated with a Walden Cycle (shown below). This supports a pentacoordinate silicon as part of the mechanism, as trigonal bipyramidal geometry around the silicon with one of the O or C axial and the other equatorial would explain the observed retention in configuration at the silicon center. This mechanism also proceeds with inversion at the carbon center.