language-icon Old Web
English
Sign In

Akkermansia muciniphila

Akkermansia muciniphila is a species of human intestinal mucin-degrading bacterium, the type species for a new genus, Akkermansia, proposed in 2004 by Muriel Derrien and others.:1474 Extensive research is being undertaken to understand its association with obesity, diabetes, and inflammation. A. muciniphila is a Gram-negative, strictly anaerobic, non-motile, non-spore-forming, oval-shaped bacterium. Its type strain is MucT (=ATCC BAA-835T =CIP 107961T). A. muciniphila is able to use mucin as its sole source of carbon and nitrogen, is culturable under anaerobic conditions on medium containing gastric mucin, and is able to colonize the gastrointestinal tracts of a number of animal species. Recently, A. muciniphila strain Urmite became the first (evidently) unculturable bacterial strain to be sequenced in its entirety entirely from a human stool sample. A. muciniphila is believed to have anti-inflammatory effects in humans, and studies have shown inverse relationships between A. muciniphila colonization and inflammatory conditions such as appendicitis or inflammatory bowel disease (IBD). In one study, reduced levels of A. muciniphila correlated with increased severity of appendicitis. In a separate study, IBD patients were found to have lower levels A. muciniphila in their intestinal tract than individuals without IBD. Researchers have discovered that A. muciniphila may be able to be used to combat obesity and type 2 diabetes. The study was carried out with mice, overfed to contain three times more fat than its lean cousin. The obese mice were then fed the bacteria, which were shown to reduce the fat burden of the mice by half without any change to the mice's diet. A study published in June 2015 showed an association between A. muciniphila abundance, insulin sensitivity and healthier metabolic status in overweight/obese adults. The healthier subjects were those with high A. muciniphila abundance and gut microbial richness. In addition, this study showed that having higher abundance of A. muciniphila at baseline was associated with greater clinical benefits after weight loss. The bacterium is naturally present in the human digestive tract at 3-5%, but has been seen to fall with obesity. It is thought that eating the bacterium increases the gut wall thickness, with the addition of mucin, which will block food from being absorbed by the body. In August 2015, additional research demonstrated that dietary fats influence the growth of Akkermansia muciniphilia relative to other bacterium in the dietary tract. Researchers conducted a study in which mice were fed diets which varied in fat composition but were otherwise identical; one group received lard while the other received fish oil. After 11 weeks, the group receiving a fish oil diet had increased levels of A. muciniphila and bacterium of genus Lactobacillus, while the group receiving a lard diet had decreased levels of A. muciniphila and Lactobacillus. Additional testing was performed by conducting fecal transplants from mice on the fish oil diet or the lard based diet into a new group of mice which had their native gut flora eradicated with antibiotics. All of these mice were then fed a lard based diet. Despite receiving the same lard-based diet for 3 weeks, recipients of transplants from lard-fed donor mice showed increased levels of Lactobacillus and increased levels of inflammation, while recipients of transplants from fish oil-fed donors showed increased levels of A. muciniphila and decreased levels of inflammation. Researchers concluded that the increase in A. muciniphila corresponded to a reduction in inflammation, indicating a link between dietary fats, gut flora composition, and inflammation levels. One study looked at 249 patients with lung or kidney cancer, A. muciniphila was in 69% of patients that did respond compared with just a third of those who did not. Boosting levels of A. muciniphila in mice seemed to also boost their response to immunotherapy. Researchers identified a chemical, called nicotinamide, that was being produced by Akkermansia muciniphila, which when injected into diseased mice (ALS) improved their condition. The chemical may be involved in minimising oxidative stress and preserving healthy neurone function for longer.

[ "Microbiome", "Obesity", "Gut flora", "Bacteria", "Mucispirillum schaedleri" ]
Parent Topic
Child Topic
    No Parent Topic