language-icon Old Web
English
Sign In

Arsenic biochemistry

Arsenic biochemistry refers to biochemical processes that can use arsenic or its compounds, such as arsenate. Arsenic is a moderately abundant element in Earth's crust, and although many arsenic compounds are often considered highly toxic to most life, a wide variety of organoarsenic compounds are produced biologically and various organic and inorganic arsenic compounds are metabolized by numerous organisms. This pattern is general for other related elements, including selenium, which can exhibit both beneficial and deleterious effects. Arsenic biochemistry has become topical since many toxic arsenic compounds are found in some aquifers, potentially affecting many millions of people via biochemical processes.Arsenobetaine, one of the most common arsenic compound in nature. Also common is arsenocholine, which has CH2OH in place of CO2H).Trimethylarsine, produced by microbial action on arsenate-derived pigmentsArsenic-containing ribose derivatives (R = several groups) Arsenic biochemistry refers to biochemical processes that can use arsenic or its compounds, such as arsenate. Arsenic is a moderately abundant element in Earth's crust, and although many arsenic compounds are often considered highly toxic to most life, a wide variety of organoarsenic compounds are produced biologically and various organic and inorganic arsenic compounds are metabolized by numerous organisms. This pattern is general for other related elements, including selenium, which can exhibit both beneficial and deleterious effects. Arsenic biochemistry has become topical since many toxic arsenic compounds are found in some aquifers, potentially affecting many millions of people via biochemical processes. The evidence that arsenic may be a beneficial nutrient at trace levels below the background to which living organisms are normally exposed has been reviewed. Some organoarsenic compounds found in nature are arsenobetaine and arsenocholine, both being found in many marine organisms. Some As-containing nucleosides (sugar derivatives) are also known. Several of these organoarsenic compounds arise via methylation processes. For example, the mold Scopulariopsis brevicaulis produces significant amounts of trimethylarsine if inorganic arsenic is present. The organic compound arsenobetaine is found in some marine foods such as fish and algae, and also in mushrooms in larger concentrations. In clean environments, the edible mushroom species Cyanoboletus pulverulentus hyperaccumulates arsenic in concentrations reaching even 1,300 mg/kg in dry weight; cacodylic acid is the major As compound. A very unusual composition of organoarsenic compounds was found in deer truffles (Elaphomyces spp.). The average person's intake is about 10–50 µg/day. Values about 1000 µg are not unusual following consumption of fish or mushrooms; however, there is little danger in eating fish since this arsenic compound is nearly non-toxic. A topical source of arsenic are the green pigments once popular in wallpapers, e.g. Paris green. A variety of illness have been blamed on this compound, although its toxicity has been exaggerated. Trimethylarsine, once known as Gosio's gas is an intensely malodorous organoarsenic compound that is commonly produced by microbial action on inorganic arsenic substrates. Arsenic (V) compounds are easily reduced to arsenic (III) and could have served as an electron acceptor on primordial Earth. Lakes that contain a substantial amount of dissolved inorganic arsenic, harbor arsenic-tolerant biota. Although phosphate and arsenate are structurally similar, there is no evidence that arsenic replaces phosphorus in DNA or RNA. A 2010 experiment involving the bacteria GFAJ-1 that made this claim was refuted by 2012. Anthropogenic (man-made) sources of arsenic, like the natural sources, are mainly arsenic oxides and the associated anions. Man-made sources of arsenic, include wastes from mineral processing, swine and poultry farms. For example, many ores, especially sulfide minerals, are contaminated with arsenic, which is released in roasting (burning in air). In such processing, arsenide is converted to arsenic trioxide, which is volatile at high temperatures and is released into the atmosphere. Poultry and swine farms make heavy use of the organoarsenic compound roxarsone as an antibiotic in feed. Some wood is treated with copper arsenates as a preservative. The mechanisms by which these sources affect 'downstream' living organisms remains uncertain but are probably diverse. One commonly cited pathway involves methylation. The monomethylated acid, methanearsonic acid (CH3AsO(OH)2), is a precursor to fungicides (tradename Neoasozin) in the cultivation of rice and cotton. Derivatives of phenylarsonic acid (C6H5AsO(OH)2) are used as feed additives for livestock, including 4-hydroxy-3-nitrobenzenearsonic acid (3-NHPAA or Roxarsone), ureidophenylarsonic acid, and p-arsanilic acid. These applications are controversial as they introduce soluble forms of arsenic into the environment. Despite, or possibly because of, its long-known toxicity, arsenic-containing potions and drugs have a history in medicine and quackery that continues into the 21st century. Starting in the early 19th century and continuing into the 20th century, Fowler's solution, a toxic concoction of sodium arsenite, was sold. The organoarsenic compound Salvarsan was the first synthetic chemotherapeutic agent, discovered by Paul Ehrlich. The treatment, however, led to many problems causing long lasting health complications. Around 1943 it was finally superseded by penicillin.The related drug Melarsoprol is still in use against late-state African trypanosomiasis (sleeping sickness), despite its high toxicity and possibly fatal side effects.

[ "Carcinogen", "Arsenic toxicity", "Methylation", "Glutathione", "Arsenite" ]
Parent Topic
Child Topic
    No Parent Topic