language-icon Old Web
English
Sign In

Ice core

An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers (for shallow holes) or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old. The physical properties of the ice and of material trapped in it can be used to reconstruct the climate over the age range of the core. The proportions of different oxygen and hydrogen isotopes provide information about ancient temperatures, and the air trapped in tiny bubbles can be analysed to determine the level of atmospheric gases such as carbon dioxide. Since heat flow in a large ice sheet is very slow, the borehole temperature is another indicator of temperature in the past. These data can be combined to find the climate model that best fits all the available data. Impurities in ice cores may depend on location. Coastal areas are more likely to include material of marine origin, such as sea salt ions. Greenland ice cores contain layers of wind-blown dust that correlate with cold, dry periods in the past, when cold deserts were scoured by wind. Radioactive elements, either of natural origin or created by nuclear testing, can be used to date the layers of ice. Some volcanic events that were sufficiently powerful to send material around the globe have left a signature in many different cores that can be used to synchronise their time scales. Ice cores have been studied since the early 20th century, and several cores were drilled as a result of the International Geophysical Year (1957–1958). Depths of over 400 m were reached, a record which was extended in the 1960s to 2164 m at Byrd Station in Antarctica. Soviet ice drilling projects in Antarctica include decades of work at Vostok Station, with the deepest core reaching 3769 m. Numerous other deep cores in the Antarctic have been completed over the years, including the West Antarctic Ice Sheet project, and cores managed by the British Antarctic Survey and the International Trans-Antarctic Scientific Expedition. In Greenland, a sequence of collaborative projects began in the 1970s with the Greenland Ice Sheet Project; there have been multiple follow-up projects, with the most recent, the East Greenland Ice-Core Project, expected to complete a deep core in east Greenland in 2020. An ice core is a vertical column through a glacier, sampling the layers that formed through an annual cycle of snowfall and melt. As snow accumulates, each layer presses on lower layers, making them denser until they turn into firn. Firn is not dense enough to prevent air from escaping; but at a density of about 830 kg/m3 it turns to ice, and the air within is sealed into bubbles that capture the composition of the atmosphere at the time the ice formed. The depth at which this occurs varies with location, but in Greenland and the Antarctic it ranges from 64 m to 115 m. Because the rate of snowfall varies from site to site, the age of the firn when it turns to ice varies a great deal. At Summit Camp in Greenland, the depth is 77 m and the ice is 230 years old; at Dome C in Antarctica the depth is 95 m and the age 2500 years. As further layers build up, the pressure increases, and at about 1500 m the crystal structure of the ice changes from hexagonal to cubic, allowing air molecules to move into the cubic crystals and form a clathrate. The bubbles disappear and the ice becomes more transparent. Two or three feet of snow may turn into less than a foot of ice. The weight above makes deeper layers of ice thin and flow outwards. Ice is lost at the edges of the glacier to icebergs, or to summer melting, and the overall shape of the glacier does not change much with time. The outward flow can distort the layers, so it is desirable to drill deep ice cores at places where there is very little flow. These can be located using maps of the flow lines. Impurities in the ice provide information on the environment from when they were deposited. These include soot, ash, and other types of particle from forest fires and volcanoes; isotopes such as beryllium-10 created by cosmic rays;micrometeorites; and pollen. The lowest layer of a glacier, called basal ice, is frequently formed of subglacial meltwater that has refrozen. It can be up to about 20 m thick, and though it has scientific value (for example, it may contain subglacial microbial populations), it often does not retain stratigraphic information.

[ "Climatology", "Oceanography", "Geomorphology", "Firn", "Dust profile", "Dye 3", "Camp Century", "Lorius" ]
Parent Topic
Child Topic
    No Parent Topic