language-icon Old Web
English
Sign In

Lunar craters

Lunar craters are impact craters on Earth's Moon. The Moon's surface has many craters, almost all of which were formed by impacts. Lunar craters are impact craters on Earth's Moon. The Moon's surface has many craters, almost all of which were formed by impacts. The word crater was adopted from the Greek word for vessel - (Κρατήρ a Greek vessel used to mix wine and water). Galileo built his first telescope in late 1609, and turned it to the Moon for the first time on November 30, 1609. He discovered that, contrary to general opinion at that time, the Moon was not a perfect sphere, but had both mountains and cup-like depressions. These were named craters by Schroeter (1791), extending its previous use with volcanoes. Scientific opinion as to the origin of craters swung back and forth over the ensuing centuries. The competing theories were (a) volcanic eruptions blasting holes in the Moon, (b) meteoric impact, (c) a theory known as the Welteislehre developed in Germany between the two World Wars which suggested glacial action creating the craters. Grove Karl Gilbert suggested in 1893 that the Moon's craters were formed by large asteroid impacts. Ralph Baldwin in 1949 wrote that the Moon's craters were mostly of impact origin. Around 1960, Gene Shoemaker revived the idea. According to David H. Levy, Gene 'saw the craters on the Moon as logical impact sites that were formed not gradually, in eons, but explosively, in seconds.' Evidence collected during the Apollo Project and from unmanned spacecraft of the same period proved conclusively that meteoric impact, or impact by asteroids for larger craters, was the origin of almost all lunar craters, and by implication, most craters on other bodies as well. The formation of new craters is studied in the lunar impact monitoring program at NASA. The biggest recorded creation was caused by an impact recorded on March 17, 2013. Visible to the naked eye, the impact is believed to be from an approximately 40 kg meteoroid striking the surface at a speed of 90,000 km/h. In March 2018 the discovery of around 7,000 formerly unidentified lunar craters via convolutional neural network developed at the University of Toronto Scarborough was announced. Because of the Moon's lack of water, atmosphere, and tectonic plates, there is little erosion, and craters are found that exceed two billion years in age. The age of large craters is determined by the number of smaller craters contained within it, older craters generally accumulating more small, contained craters. The smallest craters found have been microscopic in size, found in rocks returned to Earth from the Moon. The largest crater called such is about 290 kilometres (181 mi) across in diameter, located near the lunar South Pole. However, it is believed that many of the lunar maria were formed by giant impacts, with the resulting depression filled by upwelling lava.

[ "Impact crater", "Lunar geologic timescale" ]
Parent Topic
Child Topic
    No Parent Topic