language-icon Old Web
English
Sign In

Rebar

Rebar (short for reinforcing bar), known when massed as reinforcing steel or reinforcement steel, is a steel bar or mesh of steel wires used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has weak tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface is often deformed to promote a better bond with the concrete.bar sizesize (soft)bar size(kg/m)(mm)Area (mm²)bar sizedensity (kg/m)diameter (mm)area (mm²)bar sizesize (soft)(outside ofthreaded zone)(outside ofthreaded zone)bar sizesize (soft) Rebar (short for reinforcing bar), known when massed as reinforcing steel or reinforcement steel, is a steel bar or mesh of steel wires used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has weak tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface is often deformed to promote a better bond with the concrete. The most common type of rebar is carbon steel, typically consisting of hot-rolled round bars with deformation patterns. Other readily available types include stainless steel, and composite bars made of glass fiber, carbon fiber, or basalt fiber. The steel reinforcing bars may also be coated in an epoxy resin designed to resist the effects of corrosion mostly in saltwater environments, but also land based constructions. Bamboo has been shown to be a viable alternative to reinforcing steel in concrete construction. These alternate types tend to be more expensive or may have lesser mechanical properties and are thus more often used in specialty construction where their physical characteristics fulfill a specific performance requirement that carbon steel does not provide. Steel and concrete have similar coefficients of thermal expansion, so a concrete structural member reinforced with steel will experience minimal differential stress as the temperature changes. Reinforcing bars in masonry construction have been used since at least the 15th century (2,500 meters of rebar was used in the Château de Vincennes). During the 18th century, rebar was used to form the carcass of the Leaning Tower of Nevyansk in Russia, built on the orders of the industrialist Akinfiy Demidov. The cast iron used for the rebar was of high quality, and there is no corrosion on the bars to this day. The carcass of the tower was connected to its cast iron tented roof, crowned with one of the first known lightning rods. However, it was not until the mid-19th century that rebar displayed its greatest strengths with the embedding of steel bars into concrete, thus producing modern reinforced concrete. Several people in Europe and North America developed reinforced concrete in the 1850s. These include Joseph-Louis Lambot of France, who built reinforced concrete boats in Paris (1854) and Thaddeus Hyatt of the United States, who produced and tested reinforced concrete beams. Joseph Monier of France is one of the most notable figures for the invention and popularization of reinforced concrete. As a French gardener, Monier patented reinforced concrete flower pots in 1867, before proceeding to build reinforced concrete water tanks and bridges. Ernest L. Ransome, an English engineer and architect who worked in the United States, made a significant contribution to the development of reinforcing bars in concrete construction. He invented twisted iron rebar, which he initially thought of while designing self-supporting sidewalks for the Masonic Hall in Stockton, California. His twisted rebar was, however, not initially appreciated and even ridiculed at the Technical Society of California, where members stated that the twisting would weaken the iron. In 1889, Ransome worked on the West Coast mainly designing bridges. One of these, the Alvord Lake Bridge in San Francisco's Golden Gate Park, was the first reinforced concrete bridge built in the United States. He used twisted rebar in this structure. At the same time Ernest L. Ransome was inventing twisted steel rebar, C.A.P. Turner was designing his 'mushroom system' of reinforced concrete floor slabs with smooth round rods and Julius Kahn was experimenting with an innovative rolled diamond-shaped rebar with flat-plate flanges angled upwards at 45° (patented in 1902). Kahn predicted concrete beams with this reinforcing system would bend like a Warren truss, and also thought of this rebar as shear reinforcement. Kahn's reinforcing system was built in concrete beams, joists, and columns. The system was both praised and criticized by Kahn's engineering contemporaries: C.A.P. Turner voiced strong objections to this system as it could cause catastrophic failure to concrete structures. He rejected the idea that Kahn's reinforcing system in concrete beams would act as a Warren truss and also noted that this system would not provide the adequate amount of shear stress reinforcement at the ends of the simply supported beams, the place where the shear stress is greatest. Furthermore, Turner warned that Kahn's system could result in a brittle failure as it did not have longitudinal reinforcement in the beams at the columns. This type of failure manifested in the partial collapse of the Bixby Hotel in Long Beach, California and total collapse of the Eastman Kodak Building in Rochester, New York, both during construction in 1906. It was, however, concluded that both failures were the consequences of poor quality labor. With the increase in demand of construction standardization, innovative reinforcing systems such as Kahn's were pushed to the side in favor of the concrete reinforcing systems seen today. Requirements for deformations on steel bar reinforcement were not standardized in U.S. construction until about 1950. Modern requirements for deformations were established in 'Tentative Specifications for the Deformations of Deformed Steel Bars for Concrete Reinforcement', ASTM A305-47T. Subsequently, changes were made that increased rib height and reduced rib spacing for certain bar sizes, and the qualification of “tentative” was removed when the updated standard ASTM A305-49 was issued in 1949. The requirements for deformations found in current specifications for steel bar reinforcing, such as ASTM A615 and ASTM A706, among others, are the same as those specified in ASTM A305-49. Concrete is a material that is very strong in compression, but relatively weak in tension. To compensate for this imbalance in concrete's behavior, rebar is cast into it to carry the tensile loads. Most steel reinforcement is divided into primary and secondary reinforcement, but there are other minor uses: Masonry structures and the mortar holding them together have similar properties to concrete and also have a limited ability to carry tensile loads. Some standard masonry units like blocks and bricks are made with voids to accommodate rebar, which is then secured in place with grout. This combination is known as reinforced masonry. Steel has a thermal expansion coefficient nearly equal to that of modern concrete. If this were not so, it would cause problems through additional longitudinal and perpendicular stresses at temperatures different from the temperature of the setting. Although rebar has ribs that bind it mechanically to the concrete, it can still be pulled out of the concrete under high stresses, an occurrence that often accompanies a larger-scale collapse of the structure. To prevent such a failure, rebar is either deeply embedded into adjacent structural members (40–60 times the diameter), or bent and hooked at the ends to lock it around the concrete and other rebar. This first approach increases the friction locking the bar into place, while the second makes use of the high compressive strength of concrete.

[ "Corrosion", "Structural engineering", "Forensic engineering", "Composite material", "Metallurgy", "Rebar spacer", "Cover meter", "Rebar detailing", "rebar corrosion" ]
Parent Topic
Child Topic
    No Parent Topic