language-icon Old Web
English
Sign In

Winding number

In mathematics, the winding number of a closed curve in the plane around a given point is an integer representing the total number of times that curve travels counterclockwise around the point. The winding number depends on the orientation of the curve, and is negative if the curve travels around the point clockwise. I n d γ : Ω → C ,     z ↦ 1 2 π i ∮ γ ⁡ d ζ ζ − z {displaystyle mathrm {Ind} _{gamma }:Omega o mathbb {C} , zmapsto {frac {1}{2pi i}}oint _{gamma }{frac {dzeta }{zeta -z}}} , In mathematics, the winding number of a closed curve in the plane around a given point is an integer representing the total number of times that curve travels counterclockwise around the point. The winding number depends on the orientation of the curve, and is negative if the curve travels around the point clockwise. Winding numbers are fundamental objects of study in algebraic topology, and they play an important role in vector calculus, complex analysis, geometric topology, differential geometry, and physics, including string theory. Suppose we are given a closed, oriented curve in the xy plane. We can imagine the curve as the path of motion of some object, with the orientation indicating the direction in which the object moves. Then the winding number of the curve is equal to the total number of counterclockwise turns that the object makes around the origin. When counting the total number of turns, counterclockwise motion counts as positive, while clockwise motion counts as negative. For example, if the object first circles the origin four times counterclockwise, and then circles the origin once clockwise, then the total winding number of the curve is three. Using this scheme, a curve that does not travel around the origin at all has winding number zero, while a curve that travels clockwise around the origin has negative winding number. Therefore, the winding number of a curve may be any integer. The following pictures show curves with winding numbers between −2 and 3: A curve in the xy plane can be defined by parametric equations: If we think of the parameter t as time, then these equations specify the motion of an object in the plane between t = 0 and t = 1. The path of this motion is a curve as long as the functions x(t) and y(t) are continuous. This curve is closed as long as the position of the object is the same at t = 0 and t = 1. We can define the winding number of such a curve using the polar coordinate system. Assuming the curve does not pass through the origin, we can rewrite the parametric equations in polar form: The functions r(t) and θ(t) are required to be continuous, with r > 0. Because the initial and final positions are the same, θ(0) and θ(1) must differ by an integer multiple of 2π. This integer is the winding number:

[ "Condensed matter physics", "Quantum mechanics", "Topology", "Mathematical analysis" ]
Parent Topic
Child Topic
    No Parent Topic