language-icon Old Web
English
Sign In

Banded iron formation

Banded iron formations (also known as banded ironstone formations or BIFs) are distinctive units of sedimentary rock that are almost always of Precambrian age. Banded iron formations (also known as banded ironstone formations or BIFs) are distinctive units of sedimentary rock that are almost always of Precambrian age. A typical banded iron formation consists of repeated, thin layers (a few millimeters to a few centimeters in thickness) of silver to black iron oxides, either magnetite (Fe3O4) or hematite (Fe2O3), alternating with bands of iron-poor shales and cherts, often red in color, of similar thickness, and containing microbands (sub-millimeter) of iron oxides. Some of the oldest known rock formations (having formed ca. 3,700 million years ago), are associated with banded iron formations. Banded iron formations account for more than 60% of global iron reserves, and can be found in Australia, Brazil, Canada, India, Russia, South Africa, Ukraine, and the United States. The formations are abundant around the time of the great oxygenation event, 2,400 million years ago (mya or Ma), and become less common after 1,800 mya with evidence pointing to intermittent low levels of free atmospheric oxygen. 750 million years ago new banded iron formations formed that may be associated with the theoretical Snowball Earth. The conventional hypothesis is that the banded iron layers were formed in sea water as the result of oxygen released by photosynthetic cyanobacteria. The oxygen then combined with dissolved iron in Earth's oceans to form insoluble iron oxides, which precipitated out, forming a thin layer on the ocean floor, which may have been anoxic mud (forming shale and chert). Each band is similar to a varve, to the extent that the banding is assumed to result from cyclic variations in available oxygen. It is unclear whether these banded ironstone formations were seasonal, followed some feedback oscillation in the ocean's complex system or followed some other cycle. It is assumed that initially the Earth started with vast amounts of iron and nickel dissolved in the world's acidic seas. As photosynthetic organisms generated oxygen, the available iron in the Earth's oceans precipitated out as iron oxides. At a suspected tipping point where the oceans became permanently oxygenated, small variations in oxygen production produced periods of free oxygen in the surface waters, alternating with periods of iron oxide deposition. BIFs occur in two forms, Algoma and Superior-type. Algoma-type are generally smaller in size and formed primarily in the Archean. Algoma-type BIFs are generally found in volcanic rocks in greenstone belts. The formation process involves the chemical precipitation of iron in anoxic environments. When oxidized the iron would precipitate and sink to the bottom of the seafloor. As the oxygen levels continuously shift, we can see magnetite beds interlayered with amorphous/microcrystalline quartz (i.e. jasper). Superior type are the second and larger form of BIFs. They primarily formed during the Paleoproterozoic era, occurring on continental shelves and can be found around the world. Superior types were formed by chemical precipitation in shallow waters, primarily due to the low atmospheric and ocean oxygen levels, resulting in high iron levels in the oceans. Under calm shallow conditions, oxygen released during photosynthesis by blue-green algae, would combine with the iron creating magnetite, which would then sink and deposit on the floor. Until 1992 it was assumed that the rare, later (younger) banded iron deposits represented unusual conditions where oxygen was depleted locally. Iron-rich waters would then form in isolation and subsequently come into contact with oxygenated water. The Snowball Earth hypothesis provided an alternative explanation for these younger deposits. In a Snowball Earth state the continents, and possibly seas at low latitudes, were subject to a severe ice age circa 750 to 580 million years ago (mya) that nearly or totally depleted free oxygen. Dissolved iron then accumulated in the oxygen-poor oceans (possibly from seafloor hydrothermal vents). Following the thawing of the Earth, the seas became oxygenated once more causing the precipitation of the iron.

[ "Sedimentary rock", "Archean", "Precambrian", "Hydrothermal circulation", "Rhodovulum robiginosum", "Isua Greenstone Belt", "Greenalite" ]
Parent Topic
Child Topic
    No Parent Topic