language-icon Old Web
English
Sign In

K correction

K correction converts measurements of astronomical objects into their respective rest frames. The correction acts on that object's observed magnitude (or equivalently, its flux). Because astronomical observations often measure through a single filter or bandpass, observers only measure a fraction of the total spectrum, redshifted into the frame of the observer. For example, to compare measurements of stars at different redshifts viewed through a red filter, one must estimate K corrections to these measurements in order to make comparisons. If one could measure all wavelengths of light from an object (a bolometric flux), a K correction would not be required, nor would it be required if one could measure the light emitted in an emission line. K correction converts measurements of astronomical objects into their respective rest frames. The correction acts on that object's observed magnitude (or equivalently, its flux). Because astronomical observations often measure through a single filter or bandpass, observers only measure a fraction of the total spectrum, redshifted into the frame of the observer. For example, to compare measurements of stars at different redshifts viewed through a red filter, one must estimate K corrections to these measurements in order to make comparisons. If one could measure all wavelengths of light from an object (a bolometric flux), a K correction would not be required, nor would it be required if one could measure the light emitted in an emission line. One claim for the origin of the term 'K correction' is Edwin Hubble, who supposedly arbitrarily chose K {displaystyle K} to represent the reduction factor in magnitude due to this effect. Yet Kinney et al., in footnote 7 on page 48 of their article, note an earlier origin from Carl Wilhelm Wirtz (1918), who referred to the correction as a Konstante (German for 'constant'), hence K-correction.

[ "Redshift" ]
Parent Topic
Child Topic
    No Parent Topic