language-icon Old Web
English
Sign In

Optimistic concurrency control

Optimistic concurrency control (OCC) is a concurrency control method applied to transactional systems such as relational database management systems and software transactional memory. OCC assumes that multiple transactions can frequently complete without interfering with each other. While running, transactions use data resources without acquiring locks on those resources. Before committing, each transaction verifies that no other transaction has modified the data it has read. If the check reveals conflicting modifications, the committing transaction rolls back and can be restarted. Optimistic concurrency control was first proposed by H.T. Kung and John T. Robinson. Optimistic concurrency control (OCC) is a concurrency control method applied to transactional systems such as relational database management systems and software transactional memory. OCC assumes that multiple transactions can frequently complete without interfering with each other. While running, transactions use data resources without acquiring locks on those resources. Before committing, each transaction verifies that no other transaction has modified the data it has read. If the check reveals conflicting modifications, the committing transaction rolls back and can be restarted. Optimistic concurrency control was first proposed by H.T. Kung and John T. Robinson. OCC is generally used in environments with low data contention. When conflicts are rare, transactions can complete without the expense of managing locks and without having transactions wait for other transactions' locks to clear, leading to higher throughput than other concurrency control methods. However, if contention for data resources is frequent, the cost of repeatedly restarting transactions hurts performance significantly; it is commonly thought that other concurrency control methods have better performance under these conditions. However, locking-based ('pessimistic') methods also can deliver poor performance because locking can drastically limit effective concurrency even when deadlocks are avoided.

[ "Distributed concurrency control" ]
Parent Topic
Child Topic
    No Parent Topic