language-icon Old Web
English
Sign In

Shoelace formula

The shoelace formula or shoelace algorithm (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. The user cross-multiplies corresponding coordinates to find the area encompassing the polygon, and subtracts it from the surrounding polygon to find the area of the polygon within. It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the polygon, like tying shoelaces. It is also sometimes called the shoelace method. It has applications in surveying and forestry, among other areas. The shoelace formula or shoelace algorithm (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. The user cross-multiplies corresponding coordinates to find the area encompassing the polygon, and subtracts it from the surrounding polygon to find the area of the polygon within. It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the polygon, like tying shoelaces. It is also sometimes called the shoelace method. It has applications in surveying and forestry, among other areas. The formula was described by Meister (1724-1788) in 1769 and by Gauss in 1795. It can be verified by dividing the polygon into triangles, and can be considered to be a special case of Green's theorem. The area formula is derived by taking each edge AB, and calculating the area of triangle ABO with a vertex at the origin O, by taking the cross-product (which gives the area of a parallelogram) and dividing by 2. As one wraps around the polygon, these triangles with positive and negative area will overlap, and the areas between the origin and the polygon will be cancelled out and sum to 0, while only the area inside the reference triangle remains. This is why the formula is called the Surveyor's Formula, since the 'surveyor' is at the origin; if going counterclockwise, positive area is added when going from left to right and negative area is added when going from right to left, from the perspective of the origin. The area formula can also be applied to self-overlapping polygons since the meaning of area is still clear even though self-overlapping polygons are not generally simple. Furthermore, a self-overlapping polygon can have multiple 'interpretations' but the Shoelace formula can be used to show that the polygon's area is the same regardless of the interpretation.

[ "Equiangular polygon", "Point in polygon", "Polygon covering", "Simple polygon", "Star-shaped polygon" ]
Parent Topic
Child Topic
    No Parent Topic