language-icon Old Web
English
Sign In

BLEU

BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: 'the closer a machine translation is to a professional human translation, the better it is' – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: 'the closer a machine translation is to a professional human translation, the better it is' – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. BLEU uses a modified form of precision to compare a candidate translation against multiple reference translations. The metric modifies simple precision since machine translation systems have been known to generate more words than are in a reference text. This is illustrated in the following example from Papineni et al. (2002),

[ "Humanities", "Speech recognition", "Natural language processing", "Artificial intelligence", "Translation (geometry)", "Toluidine o", "Uraeginthus bengalus" ]
Parent Topic
Child Topic
    No Parent Topic