language-icon Old Web
English
Sign In

Estrogen insensitivity syndrome

Estrogen insensitivity syndrome (EIS), or estrogen resistance, is a form of congenital estrogen deficiency or hypoestrogenism which is caused by a defective estrogen receptor (ER) – specifically, the estrogen receptor alpha (ERα) – that results in an inability of estrogen to mediate its biological effects in the body. Congenital estrogen deficiency can alternatively be caused by a defect in aromatase, the enzyme responsible for the biosynthesis of estrogens, a condition which is referred to as aromatase deficiency and is similar in symptomatology to EIS. Estrogen insensitivity syndrome (EIS), or estrogen resistance, is a form of congenital estrogen deficiency or hypoestrogenism which is caused by a defective estrogen receptor (ER) – specifically, the estrogen receptor alpha (ERα) – that results in an inability of estrogen to mediate its biological effects in the body. Congenital estrogen deficiency can alternatively be caused by a defect in aromatase, the enzyme responsible for the biosynthesis of estrogens, a condition which is referred to as aromatase deficiency and is similar in symptomatology to EIS. EIS is an extremely rare occurrence. As of 2016, there have been three published reports of EIS, involving a total of five individuals. The reports include a male case published in 1994, a female case published in 2013, and a familial case involving two sisters and a brother which was published in 2016. EIS is analogous to androgen insensitivity syndrome (AIS), a condition in which the androgen receptor (AR) is defective and insensitive to androgens, such as testosterone and dihydrotestosterone (DHT). The functional opposite of EIS is hyperestrogenism, for instance that seen in aromatase excess syndrome. In 1994, a 28-year-old man with EIS was reported. He was fully masculinized. At 204 cm, he had tall stature. His epiphyses were unfused, and there was evidence of still-occurring slow linear growth (for comparison, his height at 16 years of age was 178 cm). He also had markedly delayed skeletal maturation (bone age 15 years), a severely undermineralized skeleton, evidence of increased bone resorption, and very early-onset osteoporosis. The genitalia, testes, and prostate of the patient were all normal and of normal size/volume. The sperm count of the patient was normal (25 million/mL; normal, >20 million/mL), but his sperm viability was low (18%; normal, >50%), indicating some degree of infertility. The patient also had early-onset temporal hair loss. He reported no history of gender identity disorder, considered himself to have strong heterosexual interests, and had normal sexual function, including morning erections and nocturnal emissions. Follicle-stimulating hormone and luteinizing hormone levels were considerably elevated (30–33 mIU/mL and 34–37 mIU/mL, respectively) and estradiol and estrone levels were markedly elevated (145 pg/mL and 119–272 pg/mL, respectively), while testosterone levels were normal (445 ng/dL). Sex hormone-binding globulin levels were mildly elevated (6.0–10.0 nmol/L), while thyroxine-binding globulin, corticosteroid-binding globulin, and prolactin levels were all normal. Osteocalcin and bone-specific alkaline phosphatase levels were both substantially elevated (18.7–21.6 ng/mL and 33.3–35.9 ng/mL, respectively). Treatment with up to very high doses of estradiol (fourteen 100-µg Estraderm patches per week) had no effect on any of his symptoms of hypoestrogenism, did not produce any estrogenic effects such as gynecomastia, and had no effect on any of his physiological parameters (e.g., hormone levels or bone parameters), suggesting a profile of complete estrogen insensitivity syndrome. In 2013, an 18-year-old woman with EIS was reported. DNA sequencing revealed a homozygous mutation in ESR1, the gene that encodes the ERα. Within the ligand-binding domain, the neutral polar glutamine 375 was changed to a basic, polar histidine. An in vitro assay of ERα-dependent gene transcription found that the EC50 for transactivation had been reduced by 240-fold relative to normal, non-mutated ERα, indicating an extreme reduction in the activity of the receptor. Clinical signs suggested a profile of complete estrogen insensitivity syndrome with a resemblance to ERα knockout mice. The patient presented with delayed puberty, including an absence of breast development (Tanner stage I) and primary amenorrhea, as well as intermittent pelvic pain. Examination revealed markedly enlarged ovaries with multiple hemorrhagic cysts as the cause of the lower abdominal pain. Estrogen levels were dramatically and persistently elevated (estradiol levels were 2,340 pg/mL, regarded as being about 10 times the normal level, and ranged from 750–3,500 pg/mL), gonadotropin levels were mildly elevated (follicle-stimulating hormone and luteinizing hormone levels were 6.7–19.1 mIU/mL and 5.8–13.2 mIU/mL, respectively), and testosterone levels were slightly elevated (33–88 ng/dL). Inhibin A levels were also markedly elevated. Sex hormone-binding globulin, corticosteroid-binding globulin, thyroxine-binding globulin, prolactin, and triglycerides, which are known to be elevated by estrogen, were all within normal ranges in spite of the extremely high levels of estrogen, and inhibin B levels were also normal. Her relatively mildly elevated levels of gonadotropins were attributed to retained negative feedback by progesterone as well as by her elevated levels of testosterone and inhibin A, although it was acknowledged that possible effects of estrogen mediated by other receptors such as ERβ could not be excluded. The patient had a small uterus, with an endometrial stripe that could not be clearly identified. At the age of 15 years, 5 months, her bone age was 11 or 12 years, and at the age of 17 years, 8 months, her bone age was 13.5 years. Her bone mass was lower than expected for her age, and levels of osteocalcin and C-terminal telopeptide were both elevated, suggesting an increased rate of bone turnover. She was 162.6 cm tall, and her growth velocity indicated a lack of estrogen-induced growth spurt at puberty. The patient had normal pubic hair development (Tanner stage IV) and severe facial acne, which could both be attributed to testosterone. Her ovarian pathology was attributed to the elevated levels of gonadotropins. In addition to her absence of breast development and areolar enlargement, the patient also appeared to show minimal widening of the hips and a lack of subcutaneous fat deposition, which is in accordance with the established role of estrogen and ERα in the development of female secondary sexual characteristics.

[ "Genetics", "Endocrinology" ]
Parent Topic
Child Topic
    No Parent Topic