language-icon Old Web
English
Sign In

Mechanization

Mechanization is the process of changing from working largely or exclusively by hand or with animals to doing that work with machinery. In an early engineering text a machine is defined as follows:Every machine is constructed for the purpose of performing certain mechanical operations, each of which supposes the existence of two other things besides the machine in question, namely, a moving power, and an object subject to the operation, which may be termed the work to be done. Mechanization is the process of changing from working largely or exclusively by hand or with animals to doing that work with machinery. In an early engineering text a machine is defined as follows: In some fields, mechanization includes the use of hand tools. In modern usage, such as in engineering or economics, mechanization implies machinery more complex than hand tools and would not include simple devices such as an ungeared horse or donkey mill. Devices that cause speed changes or changes to or from reciprocating to rotary motion, using means such as gears, pulleys or sheaves and belts, shafts, cams and cranks, usually are considered machines. After electrification, when most small machinery was no longer hand powered, mechanization was synonymous with motorized machines. Extension of mechanization of the production process is termed as automation and it is controlled by a closed loop system in which feedback is provided by the sensors. It controls the operations of different machines automatically. Water wheels date to the Roman period and were used to grind grain and lift irrigation water. Water powered bellows were in use on blast furnaces in China in 31 AD. By the 13th century, water wheels powered sawmills and trip hammers, to full cloth and pound flax and later cotton rags into pulp for making paper. Trip hammers are shown crushing ore in De re Metallica (1555). Clocks were some of the most complex early mechanical devices. Clock makers were important developers of machine tools including gear and screw cutting machines, and were also involved in the mathematical development of gear designs. Clocks were some of the earliest mass-produced items, beginning around 1830. Water powered bellows for blast furnaces, used in China in ancient times, were in use in Europe by the 15th century. De re Metallica contains drawings related to bellows for blast furnaces including a fabrication drawing. Improved gear designs decreased wear and increased efficiency. Mathematical gear designs were developed in the mid 17th century. French mathematician and engineer Desargues designed and constructed the first mill with epicycloidal teeth ca. 1650. In the 18th century involute gears, another mathematical derived design, came into use. Involute gears are better for meshing gears of different sizes than epicycloidal. Gear cutting machines came into use in the 18th century. The Newcomen steam engine was first used, to pump water from a mine, in 1712. John Smeaton introduced metal gears and axles to water wheels in the mid to last half of the 18th century. Smeaton also conducted a scientific investigation into the design of water wheels which led to significant efficiency increases. The Industrial Revolution started mainly with textile machinery, such as the spinning jenny (1764) and water frame (1768). Demand for metal parts used in textile machinery led to the invention of many machine tools in the late 1700s until the mid-1800s. After the early decades of the 19th century, iron increasingly replaced wood in gearing and shafts in textile machinery. In the 1840s self acting machine tools were developed. Self-acting tools displaced hand dexterity and allowed one unskilled operator to tend several machines. Machinery was developed to make nails ca. 1810. The Fourdrinier paper machine paper machine for continuous production of paper was patented in 1801, displacing the centuries-old hand method of making individual sheets of paper. One of the first mechanical devices used in agriculture was the seed drill invented by Jethro Tull around 1700. The seed drill allowed more uniform spacing of seed and planting depth than hand methods, increasing yields and saving valuable seed. Mechanized agriculture greatly increased in the late eighteenth and early nineteenth centuries with horse drawn reapers and horse powered threshing machines. By the late nineteenth century steam power was applied to threshing and steam tractors appeared. Internal combustion began being used for tractors in the early twentieth century. Threshing and harvesting was originally done with attachments for tractors, but in the 1930s independently powered combine harvesters were in use.

[ "Mechanical engineering", "Forestry", "Agriculture", "Archaeology", "Buggy vehicle", "agricultural mechanization" ]
Parent Topic
Child Topic
    No Parent Topic