language-icon Old Web
English
Sign In

Track geometry

North America · South America · Europe · AustraliaTrack geometry is three-dimensional geometry of track layouts and associated measurements used in design, construction and maintenance of railroad tracks. The subject is used in the context of standards, speed limits and other regulations in the areas of track gauge, alignment, elevation, curvature and track surface. Although, the geometry of the tracks is three-dimensional by nature, the standards are usually expressed in two separate layouts for horizontal and vertical. Track geometry is three-dimensional geometry of track layouts and associated measurements used in design, construction and maintenance of railroad tracks. The subject is used in the context of standards, speed limits and other regulations in the areas of track gauge, alignment, elevation, curvature and track surface. Although, the geometry of the tracks is three-dimensional by nature, the standards are usually expressed in two separate layouts for horizontal and vertical. Horizontal layout is the track layout on the horizontal plane. This can be thought of as the plan view which is a view of a 3-dimensional track from the position above the track. In track geometry, the horizontal layout involves the layout of three main track types: tangent track (straight line), curved track, and track transition curve (also called transition spiral or spiral) which connects between a tangent and a curved track. In Australia, there is a special definition for a bend (or a horizontal bend) which is a connection between two tangent tracks at almost 180 degrees (with deviation not more than 1 degree 50 minutes) without an intermediate curve. There is a set of speed limits for the bends separately from normal tangent track. Vertical layout is the track layout on the vertical plane. This can be thought of as the elevation view which is the side view of the track to show track elevation. In track geometry, the vertical layout involves concepts such as crosslevel, cant and gradient. The reference rail is the base rail that is used as a reference point for the measurement. It can vary in different countries. Most countries use one of the rails as the reference rail. For example, the United States uses the reference rail as the line rail which is the east rail of tangent track running north and south, the north rail of tangent track running east and west, the outer rail (the rail that is further away from the center) on curves, or the outside rails in multiple track territory. For Swiss railroad, the reference rail for tangent track is the center line between two rails, but it is the outside rail for curved track. Track gauge or rail gauge (also known as track gage in the United States) is the distance between the inner sides (gauge sides) of the heads of the two load bearing rails that make up a single railway line. Each country uses different gauges for different types of trains. However, the 1,435 mm (4 ft 8 1⁄2 in) gauge is the basis of 60% of the world's railways. Crosslevel (or 'cross level') is the measurement of the difference in elevation (height) between the top surface of the two rails at any point of railroad track. The two points (each at the head of each rail) are measured at by the right angles to the reference rail. Since the rail can slightly move up and down, the measurement should be done under load. It is said to be zero crosslevel when there is no difference in elevation of both rails. It is said to be reverse crosslevel when the outside rail of curved track has lower elevation than the inside rail. Otherwise, the crosslevel is expressed in the unit of height. The speed limits are governed by the crosslevel of the track. In tangent track, it is desired to have zero crosslevel. However, the deviation from zero can take place. Many regulations have specification related to speed limits of certain segment of the track based on the crosslevel.

[ "Track (rail transport)" ]
Parent Topic
Child Topic
    No Parent Topic