language-icon Old Web
English
Sign In

Amylin

1KUW, 2G48, 2KB8, 2L86, 3FPO, 3FR1, 3FTH, 3FTK, 3FTL, 3FTR, 3G7V, 3G7W, 3HGZ, 3DG1337515874ENSG00000121351ENSMUSG00000041681P10997P12968NM_000415NM_001329201NM_010491NP_000406NP_001316130NP_034621Amylin, or islet amyloid polypeptide (IAPP), is a 37-residue peptide hormone. It is cosecreted with insulin from the pancreatic β-cells in the ratio of approximately 100:1 (insulin:amylin). Amylin plays a role in glycemic regulation by slowing gastric emptying and promoting satiety, thereby preventing post-prandial spikes in blood glucose levels.2g48: crystal structure of human insulin-degrading enzyme in complex with amylin Amylin, or islet amyloid polypeptide (IAPP), is a 37-residue peptide hormone. It is cosecreted with insulin from the pancreatic β-cells in the ratio of approximately 100:1 (insulin:amylin). Amylin plays a role in glycemic regulation by slowing gastric emptying and promoting satiety, thereby preventing post-prandial spikes in blood glucose levels. IAPP is processed from an 89-residue coding sequence. Proislet amyloid polypeptide (proIAPP, proamylin, proislet protein) is produced in the pancreatic beta cells (β-cells) as a 67 amino acid, 7404 Dalton pro-peptide and undergoes post-translational modifications including protease cleavage to produce amylin. ProIAPP consists of 67 amino acids, which follow a 22 amino acid signal peptide which is rapidly cleaved after translation of the 89 amino acid coding sequence. The human sequence (from N-terminus to C-terminus) is: (MGILKLQVFLIVLSVALNHLKA) TPIESHQVEKR^ KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTYG^ KR^ NAVEVLKREPLNYLPL. The signal peptide is removed during translation of the protein and transport into the endoplasmic reticulum. Once inside the endoplasmic reticulum, a disulfide bond is formed between cysteine residues numbers 2 and 7. Later in the secretory pathway, the precursor undergoes additional proteolysis and posttranslational modification (indicated by ^). 11 amino acids are removed from the N-terminus by the enzyme proprotein convertase 2 (PC2) while 16 are removed from the C-terminus of the proIAPP molecule by proprotein convertase 1/3 (PC1/3). At the C-terminus Carboxypeptidase E then removes the terminal lysine and arginine residues. The terminal glycine amino acid that results from this cleavage allows the enzyme peptidylglycine alpha-amidating monooxygenase (PAM) to add an amine group. After this the transformation from the precursor protein proIAPP to the biologically active IAPP is complete (IAPP sequence: KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY). Insulin and IAPP are regulated by similar factors since they share a common regulatory promoter motif. The IAPP promoter is also activated by stimuli which do not affect insulin, such as tumor necrosis factor alpha and fatty acids. One of the defining features of Type 2 diabetes is insulin resistance. This is a condition wherein the body is unable to utilize insulin effectively, resulting in increased insulin production; since proinsulin and proIAPP are cosecreted, this results in an increase in the production of proIAPP as well. Although little is known about IAPP regulation, its connection to insulin indicates that regulatory mechanisms that affect insulin also affect IAPP. Thus blood glucose levels play an important role in regulation of proIAPP synthesis. Amylin functions as part of the endocrine pancreas and contributes to glycemic control. The peptide is secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. It is not found in the urine. Amylin's metabolic function is well-characterized as an inhibitor of the appearance of nutrient in the plasma. It thus functions as a synergistic partner to insulin, with which it is cosecreted from pancreatic beta cells in response to meals. The overall effect is to slow the rate of appearance (Ra) of glucose in the blood after eating; this is accomplished via coordinate slowing down gastric emptying, inhibition of digestive secretion , and a resulting reduction in food intake. Appearance of new glucose in the blood is reduced by inhibiting secretion of the gluconeogenic hormone glucagon. These actions, which are mostly carried out via a glucose-sensitive part of the brain stem, the area postrema, may be over-ridden during hypoglycemia. They collectively reduce the total insulin demand. Amylin also acts in bone metabolism, along with the related peptides calcitonin and calcitonin gene related peptide.

[ "Amyloid", "Islet", "Insulin", "Pro-islet amyloid polypeptide", "Pancreatic Amylin", "Pramlintide Acetate", "Amylin Receptor Agonists", "Amylin binding" ]
Parent Topic
Child Topic
    No Parent Topic