language-icon Old Web
English
Sign In

Planetary protection

Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth in the case of sample-return missions. Planetary protection reflects both the unknown nature of the space environment and the desire of the scientific community to preserve the pristine nature of celestial bodies until they can be studied in detail.the search for extraterrestrial life is an important objective of space research, that the planet of Mars may offer the only feasible opportunity to conduct this search during the foreseeable future, that contamination of this planet would make such a search far more difficult and possibly even prevent for all time an unequivocal result, that all practical steps should be taken to ensure that Mars be not biologically contaminated until such time as this search has been satisfactorily carried out, and that cooperation in proper scheduling of experiments and use of adequate spacecraft sterilization techniques is required on the part of all deep space probe launching authorities to avoid such contamination.'Article IX: ... States Parties to the Treaty shall pursue studies of outer space, including the Moon and other celestial bodies, and conduct exploration of them so as to avoid their harmful contamination and also adverse changes in the environment of the Earth resulting from the introduction of extraterrestrial matter and, where necessary, shall adopt appropriate measures for this purpose...“not of direct interest for understanding the process of chemical evolution or the origin of life.” … where there is only a remote chance that contamination carried by a spacecraft could jeopardize future exploration”. In this case we define “remote chance” as “the absence of niches (places where terrestrial microorganisms could proliferate) and/or a very low likelihood of transfer to those places.” “…where there is a significant chance that contamination carried by a spacecraft could jeopardize future exploration.” We define “significant chance” as “the presence of niches (places where terrestrial microorganisms could proliferate) and the likelihood of transfer to those places.” Unrestricted Category V: “Earth-return missions from bodies deemed by scientific opinion to have no indigenous life forms.”Restricted Category V: 'Earth-return missions from bodies deemed by scientific opinion to be of significant interest to the process of chemical evolution or the origin of life.'As long as the probability of people infecting other planets with terrestrial microbes is substantially smaller than the probability that such contamination happens naturally, exploration activities would, in our view, be doing no harm. We call this concept the natural contamination standard.Recommendation: Approaches to achieving planetary protection should not rely on the multiplication of bioload estimates and probabilities to calculate the likelihood of contaminating Solar System bodies with terrestrial organisms unless scientific data unequivocally define the values, statistical variation, and mutual independence of every factor used in the equation.“No uncontained Mars materials, including space craft surfaces that have been exposed to the Mars environment should be returned to Earth unless sterilised'...'For unsterilised samples returned to Earth, a programme of life detection and biohazard testing, or a proven sterilisation process, shall be undertaken as an absolute precondition for the controlled distribution of any portion of the sample.”Recommendation 3 COSPAR should add a separate and parallel policy to provide guidance on requirements/best practices for protection of non-living/nonlife-related aspects of Outer Space and celestial bodies''Recommendation 4.' COSPAR should consider that the appropriate protection of potential indigenous extraterrestrial life shall include avoiding the harmful contamination of any habitable environment —whether extant or foreseeable— within the maximum potential time of viability of any terrestrial organisms (including microbial spores) that may be introduced into that environment by human or robotic activity.''One consequence of this view is that Europa must be protected from contamination for an open-ended period, until it can be demonstrated that no ocean exists or that no organisms are present. Thus, we need to be concerned that over a time scale on the order of 10 million to 100 million years (an approximate age for the surface of Europa), any contaminating material is likely to be carried into the deep ice crust or into the underlying ocean.'This protocol was defined in concert with Viking, the first mission to face the most stringent planetary protection requirements; its implementation remains the gold standard today.A policy review of the Outer Space Treaty concluded that, while Article IX 'imposed international obligations on all state parties to protect and preserve the environmental integrity of outer space and celestial bodies such as Mars,' there is no definition as to what constitutes harmful contamination, nor does the treaty specify under what circumstances it would be necessary to 'adopt appropriate measures' or which measures would in fact be 'appropriate' An earlier legal review, however, argued that 'if the assumption is made that the parties to the treaty were not merely being verbose' and 'harmful contamination' is not simply redundant, 'harmful' should be interpreted as 'harmful to the interests of other states,' and since 'states have an interest in protecting their ongoing space programs,' Article IX must mean that 'any contamination which would result in harm to a state’s experiments or programs is to be avoided' Current NASA policy states that the goal of NASA’s forward contamination planetary protection policy is the protection of scientific investigations, declaring explicitly that 'the conduct of scientific investigations of possible extraterrestrial life forms, precursors, and remnants must not be jeopardized'The best that I hear now is that the techniques of isolation we used wouldn’t be adequate for a sample coming back from Mars, so somebody else has a big job on their hands. Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth in the case of sample-return missions. Planetary protection reflects both the unknown nature of the space environment and the desire of the scientific community to preserve the pristine nature of celestial bodies until they can be studied in detail. There are two types of interplanetary contamination. Forward contamination is the transfer of viable organisms from Earth to another celestial body. Back contamination is the transfer of extraterrestrial organisms, if such exist, back to the Earth's biosphere. The potential problem of lunar and planetary contamination was first raised at the International Astronautical Federation VIIth Congress in Rome in 1956. In 1958 the U.S. National Academy of Sciences (NAS) passed a resolution stating, “The National Academy of Sciences of the United States of America urges that scientists plan lunar and planetary studies with great care and deep concern so that initial operations do not compromise and make impossible forever after critical scientific experiments.” This led to creation of the ad hoc Committee on Contamination by Extraterrestrial Exploration (CETEX), which met for a year and recommended that interplanetary spacecraft be sterilized, and stated, “The need for sterilization is only temporary. Mars and possibly Venus need to remain uncontaminated only until study by manned ships becomes possible”. In 1959, planetary protection was transferred to the newly formed Committee on Space Research (COSPAR). COSPAR in 1964 issued Resolution 26 affirming that: In 1967, the US, USSR, and UK ratified the United Nations Outer Space Treaty. The legal basis for planetary protection lies in Article IX of this treaty: This treaty has since been signed and ratified by 104 nation states. Another 24 have signed but not ratified. All the current space-faring nation states have both signed and ratified it. Amongst nations with space faring aspirations, some have not yet ratified: the United Arab Emirates, Syria and North Korea have signed but not yet ratified. The Outer Space Treaty has consistent and widespread international support, and as a result of this, together with the fact that it is based on the 1963 declaration which was adopted by consensus in the UN National Assembly, it has taken on the status of customary international law. The provisions of the Outer Space Treaty are therefore binding on all states, even those who have neither signed nor ratified it. For forward contamination, the phrase to be interpreted is 'harmful contamination'. Two legal reviews came to differing interpretations of this clause (both reviews were unofficial). However the currently accepted interpretation is that “any contamination which would result in harm to a state’s experiments or programs is to be avoided”. NASA policy states explicitly that “the conduct of scientific investigations of possible extraterrestrial life forms, precursors, and remnants must not be jeopardized”.

[ "Exploration of Mars", "Mars landing", "Mars Exploration Program Analysis Group" ]
Parent Topic
Child Topic
    No Parent Topic