language-icon Old Web
English
Sign In

IPv4

Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP). It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production in the ARPANET in 1983. It still routes most Internet traffic today, despite the ongoing deployment of a successor protocol, IPv6. IPv4 is described in IETF publication RFC 791 (September 1981), replacing an earlier definition (RFC 760, January 1980). Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP). It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production in the ARPANET in 1983. It still routes most Internet traffic today, despite the ongoing deployment of a successor protocol, IPv6. IPv4 is described in IETF publication RFC 791 (September 1981), replacing an earlier definition (RFC 760, January 1980). The Internet Protocol is the protocol that defines and enables internetworking at the internet layer of the Internet Protocol Suite. In essence it forms the Internet. It uses a logical addressing system and performs routing, which is the forwarding of packets from a source host to the next router that is one hop closer to the intended destination host on another network. IPv4 is a connectionless protocol, and operates on a best effort delivery model, in that it does not guarantee delivery, nor does it assure proper sequencing or avoidance of duplicate delivery. These aspects, including data integrity, are addressed by an upper layer transport protocol, such as the Transmission Control Protocol (TCP). IPv4 uses 32-bit addresses which limits the address space to 4294967296 (232) addresses. IPv4 reserves special address blocks for private networks (~18 million addresses) and multicast addresses (~270 million addresses). IPv4 addresses may be represented in any notation expressing a 32-bit integer value. They are most often written in the dot-decimal notation, which consists of four octets of the address expressed individually in decimal numbers and separated by periods. For example, the quad-dotted IP address 192.0.2.235 represents the 32-bit decimal number 3221226219, which in hexadecimal format is 0xC00002EB. This may also be expressed in dotted hex format as 0xC0.0x00.0x02.0xEB, or with octal byte values as 0300.0000.0002.0353. CIDR notation combines the address with its routing prefix in a compact format, in which the address is followed by a slash character (/) and the count of consecutive 1 bits in the routing prefix (subnet mask). In the original design of IPv4, an IP address was divided into two parts: the network identifier was the most significant octet of the address, and the host identifier was the rest of the address. The latter was also called the rest field. This structure permitted a maximum of 256 network identifiers, which was quickly found to be inadequate.

[ "IPv6", "Softwire", "Application-level gateway", "IPv4 address exhaustion", "IPv6 transition mechanism", "6in4" ]
Parent Topic
Child Topic
    No Parent Topic