Bacterial soft rots are caused by several types of bacteria, but most commonly by species of gram-negative bacteria, Erwinia, Pectobacterium, and Pseudomonas. It is a destructive disease of fruits, vegetables, and ornamentals found worldwide, and effects genera from nearly all the plant families. The bacteria mainly attack the fleshy storage organs of their hosts (tubers, corms, bulbs, and rhizomes), but they also affect succulent buds, stems, and petiole tissues. With the aid of special enzymes, the plant is turned into a liquidy mush in order for the bacteria to consume the plant cell's nutrients. Disease spread can be caused by simple physical interaction between infected and healthy tissues during storage or transit. The disease can also be spread by insects. Control of the disease is not always very effective, but sanitary practices in production, storing, and processing are something that can be done in order to slow the spread of the disease and protect yields. Bacterial soft rots are caused by several types of bacteria, but most commonly by species of gram-negative bacteria, Erwinia, Pectobacterium, and Pseudomonas. It is a destructive disease of fruits, vegetables, and ornamentals found worldwide, and effects genera from nearly all the plant families. The bacteria mainly attack the fleshy storage organs of their hosts (tubers, corms, bulbs, and rhizomes), but they also affect succulent buds, stems, and petiole tissues. With the aid of special enzymes, the plant is turned into a liquidy mush in order for the bacteria to consume the plant cell's nutrients. Disease spread can be caused by simple physical interaction between infected and healthy tissues during storage or transit. The disease can also be spread by insects. Control of the disease is not always very effective, but sanitary practices in production, storing, and processing are something that can be done in order to slow the spread of the disease and protect yields. There are a variety of hosts including but not limited to; banana, beans, cabbage, carrot, cassava, coffee, corn, cotton, onion, other crucifers, pepper, potato, sweet potato and tomato. Pandanus conoideus and karuka (Pandanus julianettii) get bacterial soft rot and necrosis on the leaves from Pectobacterium carotovorum subsp. carotovorum. For each host there are different symptoms displayed. Most symptoms are along the lines of watery and soft decay of the tissue. Cabbage and crucifers' symptoms start where the tissue makes contact with the soil. Often there is a change in color and in the case of a carrot, the whole taproot can be decayed leaving just the epidermis. Sweet potatoes show clear lesions that grow rapidly leaving a recognizable watery and soft, oozy tissue where only the peel remains intact. Potatoes experience a cream to tan colored tuber that becomes very soft and watery. A characteristic black border separates the diseased area and the healthy tissue. Only when the secondary organism invades the infected tissue does that decay become slimy with a foul odor. Like the carrot, the whole tuber can be consumed leaving just the epidermis in the soil. The foliage becomes weak and chlorotic with upward turned leaves and lesions on the stem. The stem also rots and becomes mushy with its colorless or brown lesions. Soft rots are characterized by their distinct maceration of hosts' cell walls with pectolytic enzymes, and subsequent digestion of the intracellular fluid as the bacteria grows. But little is known about the pathogen's interaction with its host at earlier stages when it is still attaching to, and growing within the host with no symptoms present. In fact, the bacteria may develop large populations within a plant before any symptoms can be seen. No one knows exactly why the bacteria have this dormant stage, or what factors influence the bacteria's virulence, but the research is being done. There are many ways in which a plant can become infected by a bacterial soft rot. They can be host to the bacteria either by being infected as seed, or from direct inoculation into wounds or natural openings (stomata or lenticels) in mature plants, which is most common. But, when a plant is infected and the conditions are favorable, the bacteria immediately begin feeding on liquids released from injured cells and start replicating. As they replicate they release more and more pectolytic enzymes that degrade and break down cell walls. And, because of the high turgor pressure within the cells, this maceration effectively causes the cells to explode and die providing more food for the bacteria.