An electron microprobe (EMP), also known as an electron probe microanalyzer (EPMA) or electron micro probe analyzer (EMPA), is an analytical tool used to non-destructively determine the chemical composition of small volumes of solid materials. It works similarly to a scanning electron microscope: the sample is bombarded with an electron beam, emitting x-rays at wavelengths characteristic to the elements being analyzed. This enables the abundances of elements present within small sample volumes (typically 10-30 cubic micrometers or less) to be determined. The concentrations of elements from beryllium to plutonium can be measured at levels as low as 100 parts per million (ppm). Recent models of EPMAs can accurately measure elemental concentrations of approximately 10 ppm. An electron microprobe (EMP), also known as an electron probe microanalyzer (EPMA) or electron micro probe analyzer (EMPA), is an analytical tool used to non-destructively determine the chemical composition of small volumes of solid materials. It works similarly to a scanning electron microscope: the sample is bombarded with an electron beam, emitting x-rays at wavelengths characteristic to the elements being analyzed. This enables the abundances of elements present within small sample volumes (typically 10-30 cubic micrometers or less) to be determined. The concentrations of elements from beryllium to plutonium can be measured at levels as low as 100 parts per million (ppm). Recent models of EPMAs can accurately measure elemental concentrations of approximately 10 ppm. In 1944, MIT built an electron microprobe, combining an electron microscope and an energy loss spectrometer. Electron energy loss spectroscopy is very good for light element analysis and they obtained spectra of C-Kα, N-Kα and O-Kα radiation. In 1947, Hiller patented the idea of using an electron beam to produce analytical X-rays, but never constructed a working model. His design proposed using Bragg diffraction from a flat crystal to select specific X-ray wavelengths and a photographic plate as a detector. In 1948-1950, Raymond Castaing, supervised by André Guinier, built the first electron “microsonde électronique” (electron microprobe) at ONERA. This microprobe produced an electron beam diameter of 1-3 μm with a beam current of ~10 nanoamperes (nA) and used a Geiger counter to detect the X-rays produced from the sample. However, the Geiger counter could not distinguish X-rays produced from specific elements and in 1950, Castaing added a quartz crystal between the sample and the detector to permit wavelength discrimination. He also added an optical microscope to view the point of beam impact. The resulting microprobe was described in Castaing's 1951 PhD Thesis, in which he laid the foundations of the theory and application of quantitative analysis by electron microprobe, establishing the theoretical framework for the matrix corrections of absorption and fluorescence effects. Castaing (1921-1999) is considered the 'father' of electron microprobe analysis. CAMECA (France) produced the first commercial microprobe, the “MS85,” in 1956. It was soon followed by many microprobes from other companies; however, all companies except CAMECA , JEOL and Shimadzu Corporation are now out of business. In addition, many researchers build electron microprobes in their labs. Significant subsequent improvements and modifications to microprobes included scanning the electron beam to make X-ray maps (1960), the addition of solid state EDS detectors (1968) and the development of synthetic multilayer diffracting crystals for analysis of light elements (1984). Later, CAMECA became also the pioneer on manufacturing a shielded version of the electron microprobe for nuclear applications. Several new advances in CAMECA instruments in the last decades allowed them to expand their range of applications on metallurgy, electronics, geology, mineralogy, nuclear plants, trace elements, dentistry, etc. A beam of electrons is fired at a sample. The beam causes each element in the sample to emit X-rays at a characteristic frequency; the X-rays can then be detected by the electron microprobe. The size and current density of the electron beam determines the trade-off between resolution and scan time and/or analysis time. Low-energy electrons are produced from a tungsten filament, a lanthanum hexaboride crystal cathode or a field emission electron source and accelerated by a positively biased anode plate to 3 to 30 thousand electron volts (keV). The anode plate has central aperture and electrons that pass through it are collimated and focused by a series of magnetic lenses and apertures. The resulting electron beam (approximately 5 nm to 10 μm diameter) may be rastered across the sample or used in spot mode to produce excitation of various effects in the sample. Among these effects are: phonon excitation (heat), cathodoluminescence (visible light fluorescence), continuum X-ray radiation (bremsstrahlung), characteristic X-ray radiation, secondary electrons (plasmon production), backscattered electron production, and Auger electron production. When the beam electrons (and scattered electrons from the sample) interact with bound electrons in the innermost electron shells of the atoms of the various elements in the sample, they can scatter the bound electrons from the electron shell producing a vacancy in that shell (ionization of the atom). This vacancy is unstable and must be filled by an electron from either a higher energy bound shell in the atom (producing another vacancy which is in turn filled by electrons from yet higher energy bound shells) or by unbound electrons of low energy. The difference in binding energy between the electron shell in which the vacancy was produced and the shell from which the electron comes to fill the vacancy is emitted as a photon. The energy of the photon is in the X-ray region of the electromagnetic spectrum. As the electron structure of each element is unique, the series X-ray line energies produced by vacancies in the innermost shells is characteristic of that element, although lines from different elements may overlap. As the innermost shells are involved, the X-ray line energies are generally not affected by chemical effects produced by bonding between elements in compounds except in low atomic number (Z) elements ( B, C, N, O and F for Kalpha and Al to Cl for Kbeta) where line energies may be shifted as a result of the involvement of the electron shell from which vacancies are filled in chemical bonding. The characteristic X-rays are used for chemical analysis. Specific X-ray wavelengths or energies are selected and counted, either by wavelength dispersive X-ray spectroscopy (WDS) or energy dispersive X-ray spectroscopy (EDS). WDS utilizes Bragg diffraction from crystals to select X-ray wavelengths of interest and direct them to gas-flow or sealed proportional detectors. In contrast, EDS uses a solid state semiconductor detector to accumulate X-rays of all wavelengths produced from the sample. While EDS yields more information and typically requires a much shorter counting time, WDS is generally a more precise technique with lower limits of detection because its superior X-ray peak resolution and greater peak to background ratio. Chemical composition is determined by comparing the intensities of characteristic X-rays from the sample material with intensities from known composition (standards). Counts from the sample must be corrected for matrix effects (depth of production of the X-rays, absorption and secondary fluorescence) to yield quantitative chemical compositions. The resulting chemical information is gathered in textural context. Variations in chemical composition within a material (zoning), such as a mineral grain or metal, can be readily determined.