language-icon Old Web
English
Sign In

Thermogalvanic cell

A thermogalvanic cell is a kind of galvanic cell in which heat is employed to provide electrical power directly. These cells are electrochemical cells in which the two electrodes are deliberately maintained at different temperatures. This temperature difference generates a potential difference between the electrodes. The electrodes can be of identical composition and the electrolyte solution homogeneous. This is usually the case in these cells. This is in contrast to galvanic cells in which electrodes and/or solutions of different composition provide the electromotive potential. As long as there is a difference in temperature between the electrodes a current will flow through the circuit. A thermogalvanic cell can be seen as analogous to a concentration cell but instead of running on differences in the concentration/pressure of the reactants they make use of differences in the 'concentrations' of thermal energy. The principal application of thermogalvanic cells is the production of electricity from low-temperature heat sources (waste heat and solar heat). Their energetic efficiency is low, in the range of 0.1% to 1% for conversion of heat into electricity. A thermogalvanic cell is a kind of galvanic cell in which heat is employed to provide electrical power directly. These cells are electrochemical cells in which the two electrodes are deliberately maintained at different temperatures. This temperature difference generates a potential difference between the electrodes. The electrodes can be of identical composition and the electrolyte solution homogeneous. This is usually the case in these cells. This is in contrast to galvanic cells in which electrodes and/or solutions of different composition provide the electromotive potential. As long as there is a difference in temperature between the electrodes a current will flow through the circuit. A thermogalvanic cell can be seen as analogous to a concentration cell but instead of running on differences in the concentration/pressure of the reactants they make use of differences in the 'concentrations' of thermal energy. The principal application of thermogalvanic cells is the production of electricity from low-temperature heat sources (waste heat and solar heat). Their energetic efficiency is low, in the range of 0.1% to 1% for conversion of heat into electricity. The use of heat to empower galvanic cells was first studied around 1880. However it was not until the decade of 1950 that more serious research was undertaken in this field. Thermogalvanic cells are a kind of heat engine. Ultimately the driving force behind them is the transport of entropy from the high temperature source to the low temperature sink. Therefore, these cells work thanks to a thermal gradient established between different parts of the cell. Because the rate and enthalpy of chemical reactions depend directly on the temperature, different temperatures at the electrodes imply different chemical equilibrium constants. This translates into unequal chemical equilibrium conditions on the hot side and on the cold side. The thermocell tries to approach an homogeneous equilibrium and, in doing so, produces a flow of chemical species and electrons. The electrons flow through the path of least resistance (the outer circuit) making it possible to extract power from the cell.

[ "Seebeck coefficient", "aqueous electrolyte", "Electrochemistry", "Electrolyte" ]
Parent Topic
Child Topic
    No Parent Topic