language-icon Old Web
English
Sign In

Anomalous propagation

Anomalous propagation (sometimes shortened to anaprop or anoprop) includes different forms of radio propagation due to an unusual distribution of temperature and humidity with height in the atmosphere. While this includes propagation with larger losses than in a standard atmosphere, in practical applications it is most often meant to refer to cases when signal propagates beyond normal radio horizon. Anomalous propagation (sometimes shortened to anaprop or anoprop) includes different forms of radio propagation due to an unusual distribution of temperature and humidity with height in the atmosphere. While this includes propagation with larger losses than in a standard atmosphere, in practical applications it is most often meant to refer to cases when signal propagates beyond normal radio horizon. Anomalous propagation can cause interference to VHF and UHF radio communications if distant stations are using the same frequency as local services. Over-the-air analog television broadcasting, for example, may be disrupted by distant stations on the same channel, or experience distortion of transmitted signals ghosting). Radar systems may produce inaccurate ranges or bearings to distant targets if the radar 'beam' is bent by propagation effects. However, radio hobbyists take advantage of these effects in TV and FM DX. The first assumption of the prediction of propagation of a radio wave is that it is moving through air with temperature that declines at a standard rate with height in the troposphere. This has the effect of slightly bending (refracting) the path toward the Earth, and accounts for an effective range that is slightly greater than the geometric distance to the horizon. Any variation to this stratification of temperatures will modify the path followed by the wave. Changes to the path can be separated into super and under refraction: It is very common to have temperature inversions forming near the ground, for instance air cooling at night while remaining warm aloft. This happens equally aloft when a warm and dry airmass overrides a cooler one, like in the subsidence aloft cause by a high pressure intensifying. The index of refraction of air increases in both cases and the EM wave bends toward the ground instead of continuing upward.

[ "Wave propagation", "Radar" ]
Parent Topic
Child Topic
    No Parent Topic