language-icon Old Web
English
Sign In

Introduction to gauge theory

A gauge theory is a type of theory in physics. The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). Modern theories describe physical forces in terms of fields, e.g., the electromagnetic field, the gravitational field, and fields that describe forces between the elementary particles. A general feature of these field theories is that the fundamental fields cannot be directly measured; however, some associated quantities can be measured, such as charges, energies, and velocities. For example, say you cannot measure the diameter of a lead ball, but you can determine how many lead balls, which are equal in every way, are required to make a pound. Using the number of balls, the elemental mass of lead, and the formula for calculating the volume of a sphere from its diameter, one could indirectly determine the diameter of a single lead ball. In field theories, different configurations of the unobservable fields can result in identical observable quantities. A transformation from one such field configuration to another is called a gauge transformation; the lack of change in the measurable quantities, despite the field being transformed, is a property called gauge invariance. For example, if you could measure the color of lead balls and discover that when you change the color, you still fit the same number of balls in a pound, the property of 'color' would show gauge invariance. Since any kind of invariance under a field transformation is considered a symmetry, gauge invariance is sometimes called gauge symmetry. Generally, any theory that has the property of gauge invariance is considered a gauge theory. A gauge theory is a type of theory in physics. The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). Modern theories describe physical forces in terms of fields, e.g., the electromagnetic field, the gravitational field, and fields that describe forces between the elementary particles. A general feature of these field theories is that the fundamental fields cannot be directly measured; however, some associated quantities can be measured, such as charges, energies, and velocities. For example, say you cannot measure the diameter of a lead ball, but you can determine how many lead balls, which are equal in every way, are required to make a pound. Using the number of balls, the elemental mass of lead, and the formula for calculating the volume of a sphere from its diameter, one could indirectly determine the diameter of a single lead ball. In field theories, different configurations of the unobservable fields can result in identical observable quantities. A transformation from one such field configuration to another is called a gauge transformation; the lack of change in the measurable quantities, despite the field being transformed, is a property called gauge invariance. For example, if you could measure the color of lead balls and discover that when you change the color, you still fit the same number of balls in a pound, the property of 'color' would show gauge invariance. Since any kind of invariance under a field transformation is considered a symmetry, gauge invariance is sometimes called gauge symmetry. Generally, any theory that has the property of gauge invariance is considered a gauge theory. For example, in electromagnetism the electric and magnetic fields, E and B are observable, while the potentials V ('voltage') and A (the vector potential) are not. Under a gauge transformation in which a constant is added to V, no observable change occurs in E or B. With the advent of quantum mechanics in the 1920s, and with successive advances in quantum field theory, the importance of gauge transformations has steadily grown. Gauge theories constrain the laws of physics, because all the changes induced by a gauge transformation have to cancel each other out when written in terms of observable quantities. Over the course of the 20th century, physicists gradually realized that all forces (fundamental interactions) arise from the constraints imposed by local gauge symmetries, in which case the transformations vary from point to point in space and time. Perturbative quantum field theory (usually employed for scattering theory) describes forces in terms of force-mediating particles called gauge bosons. The nature of these particles is determined by the nature of the gauge transformations. The culmination of these efforts is the Standard Model, a quantum field theory that accurately predicts all of the fundamental interactions except gravity. The earliest field theory having a gauge symmetry was Maxwell's formulation, in 1864–65, of electrodynamics ('A Dynamical Theory of the Electromagnetic Field'). The importance of this symmetry remained unnoticed in the earliest formulations. Similarly unnoticed, Hilbert had derived Einstein's equations of general relativity by postulating a symmetry under any change of coordinates. Later Hermann Weyl, inspired by success in Einstein's general relativity, conjectured (incorrectly, as it turned out) in 1919 that invariance under the change of scale or 'gauge' (a term inspired by the various track gauges of railroads) might also be a local symmetry of electromagnetism.:5, 12 Although Weyl's choice of the gauge was incorrect, the name 'gauge' stuck to the approach. After the development of quantum mechanics, Weyl, Fock and London modified their gauge choice by replacing the scale factor with a change of wave phase, and applying it successfully to electromagnetism. Gauge symmetry was generalized mathematically in 1954 by Chen Ning Yang and Robert Mills in an attempt to describe the strong nuclear forces. This idea, dubbed Yang–Mills theory, later found application in the quantum field theory of the weak force, and its unification with electromagnetism in the electroweak theory. The importance of gauge theories for physics stems from their tremendous success in providing a unified framework to describe the quantum-mechanical behavior of electromagnetism, the weak force and the strong force. This gauge theory, known as the Standard Model, accurately describes experimental predictions regarding three of the four fundamental forces of nature. Historically, the first example of gauge symmetry to be discovered was classical electromagnetism. A static electric field can be described in terms of an electric potential (voltage) that is defined at every point in space, and in practical work it is conventional to take the Earth as a physical reference that defines the zero level of the potential, or ground. But only differences in potential are physically measurable, which is the reason that a voltmeter must have two probes, and can only report the voltage difference between them. Thus one could choose to define all voltage differences relative to some other standard, rather than the Earth, resulting in the addition of a constant offset. If the potential V {displaystyle V} is a solution to Maxwell's equations then, after this gauge transformation, the new potential V → V + C {displaystyle V ightarrow V+C} is also a solution to Maxwell's equations and no experiment can distinguish between these two solutions. In other words, the laws of physics governing electricity and magnetism (that is, Maxwell equations) are invariant under gauge transformation. Maxwell's equations have a gauge symmetry. Generalizing from static electricity to electromagnetism, we have a second potential, the magnetic vector potential A, which can also undergo gauge transformations. These transformations may be local. That is, rather than adding a constant onto V, one can add a function that takes on different values at different points in space and time. If A is also changed in certain corresponding ways, then the same E and B fields result. The detailed mathematical relationship between the fields E and B and the potentials V and A is given in the article Gauge fixing, along with the precise statement of the nature of the gauge transformation. The relevant point here is that the fields remain the same under the gauge transformation, and therefore Maxwell's equations are still satisfied. Gauge symmetry is closely related to charge conservation. Suppose that there existed some process by which one could briefly violate conservation of charge by creating a charge q at a certain point in space, 1, moving it to some other point 2, and then destroying it. We might imagine that this process was consistent with conservation of energy. We could posit a rule stating that creating the charge required an input of energy E1=qV1 and destroying it released E2=qV2, which would seem natural since qV measures the extra energy stored in the electric field because of the existence of a charge at a certain point. Outside of the interval during which the particle exists, conservation of energy would be satisfied, because the net energy released by creation and destruction of the particle, qV2-qV1, would be equal to the work done in moving the particle from 1 to 2, qV2-qV1. But although this scenario salvages conservation of energy, it violates gauge symmetry. Gauge symmetry requires that the laws of physics be invariant under the transformation V → V + C {displaystyle V ightarrow V+C} , which implies that no experiment should be able to measure the absolute potential, without reference to some external standard such as an electrical ground. But the proposed rules E1=qV1 and E2=qV2 for the energies of creation and destruction would allow an experimenter to determine the absolute potential, simply by comparing the energy input required to create the charge q at a particular point in space in the case where the potential is V {displaystyle V} and V + C {displaystyle V+C} respectively. The conclusion is that if gauge symmetry holds, and energy is conserved, then charge must be conserved. As discussed above, the gauge transformations for classical (i.e., non-quantum mechanical) general relativity are arbitrary coordinate transformations. Technically, the transformations must be invertible, and both the transformation and its inverse must be smooth, in the sense of being differentiable an arbitrary number of times.

[ "Gauge theory", "Gauge (firearms)", "An Exceptionally Simple Theory of Everything", "Event symmetry", "Lorenz gauge condition", "Canonical quantum gravity", "String-net liquid" ]
Parent Topic
Child Topic
    No Parent Topic