language-icon Old Web
English
Sign In

IP multicast

IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6. IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6. Protocols associated with IP multicast include Internet Group Management Protocol, Protocol Independent Multicast and Multicast VLAN Registration. IGMP snooping is used to manage IP multicast traffic on layer-2 networks. IP multicast is described in .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:''''''''''''}.mw-parser-output .citation .cs1-lock-free a{background:url('//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png')no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url('//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png')no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url('//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png')no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url('//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png')no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}RFC 1112. IP multicast was first standardized in 1986. Its specifications have been augmented in RFC 4604 to include group management and in RFC 5771 to include administratively scoped addresses. IP multicast is a technique for one-to-many and many-to-many real-time communication over an IP infrastructure in a network. It scales to a larger receiver population by requiring neither prior knowledge of a receiver's identity nor prior knowledge of the number of receivers. Multicast uses network infrastructure efficiently by requiring the source to send a packet only once, even if it needs to be delivered to a large number of receivers. The nodes in the network (typically network switches and routers) take care of replicating the packet to reach multiple receivers such that messages are sent over each link of the network only once. The most common transport layer protocol to use multicast addressing is User Datagram Protocol (UDP). By its nature, UDP is not reliable—messages may be lost or delivered out of order. Reliable multicast protocols such as Pragmatic General Multicast (PGM) have been developed to add loss detection and retransmission on top of IP multicast. Key concepts in IP multicast include an IP multicast group address, a multicast distribution tree and receiver driven tree creation. An IP multicast group address is used by sources and the receivers to send and receive multicast messages. Sources use the group address as the IP destination address in their data packets. Receivers use this group address to inform the network that they are interested in receiving packets sent to that group. For example, if some content is associated with group 239.1.1.1, the source will send data packets destined to 239.1.1.1. Receivers for that content will inform the network that they are interested in receiving data packets sent to the group 239.1.1.1. The receiver joins 239.1.1.1. The protocol typically used by receivers to join a group is called the Internet Group Management Protocol (IGMP). With routing protocols based on shared trees, once the receivers join a particular IP multicast group, a multicast distribution tree is constructed for that group. The protocol most widely used for this is Protocol Independent Multicast (PIM). It sets up multicast distribution trees such that data packets from senders to a multicast group reach all receivers which have joined the group. There are variations of PIM implementations: Sparse Mode (SM), Dense Mode (DM), Source Specific Mode (SSM) and Bidirectional Mode (Bidir, or Sparse-Dense Mode, SDM). Of these, PIM-SM is the most widely deployed as of 2006; SSM and Bidir are simpler and scalable variations developed more recently and are gaining in popularity. IP multicast operation does not require an active source to know about the receivers of the group. The multicast tree construction is receiver driven and is initiated by network nodes which are close to the receivers. IP multicast scales to a large receiver population. The IP multicast model has been described by Internet architect Dave Clark as, 'You put packets in at one end, and the network conspires to deliver them to anyone who asks.'

[ "Source-specific multicast", "Multicast", "Xcast", "Core-based trees", "Multicast encryption", "End System Multicast", "Session Announcement Protocol", "ODMRP" ]
Parent Topic
Child Topic
    No Parent Topic