Microbiologically induced calcite precipitation

Microbiologically induced calcium carbonate precipitation (MICP) is a bio-geochemical process that induces calcium carbonate precipitation within the soil matrix. Biomineralization in the form of calcium carbonate precipitation can be traced back to the Precambrian period. Calcium carbonate can be precipitated in three polymorphic forms, which in the order of their usual stabilities are calcite, aragonite and vaterite. The main groups of microorganisms that can induce the carbonate precipitation are photosynthetic microorganisms such as cyanobacteria and microalgae; sulfate-reducing bacteria; and some species of microorganisms involved in nitrogen cycle. Several mechanisms have been identified by which bacteria can induce the calcium carbonate precipitation, including urea hydrolysis, denitrification, sulphate production, and iron reduction. Two different pathways, or autotrophic and heterotrophic pathways, through which calcium carbonate is produced have been identified. There are three autotrophic pathways, which all result in depletion of carbon dioxide and favouring calcium carbonate precipitation. In heterotrophic pathway, two metabolic cycles can be involved: the nitrogen cycle and the sulfur cycle. Several applications of this process have been proposed, such as remediation of cracks and corrosion prevention in concrete, biogrout, sequestration of radionuclides and heavy metals. Microbiologically induced calcium carbonate precipitation (MICP) is a bio-geochemical process that induces calcium carbonate precipitation within the soil matrix. Biomineralization in the form of calcium carbonate precipitation can be traced back to the Precambrian period. Calcium carbonate can be precipitated in three polymorphic forms, which in the order of their usual stabilities are calcite, aragonite and vaterite. The main groups of microorganisms that can induce the carbonate precipitation are photosynthetic microorganisms such as cyanobacteria and microalgae; sulfate-reducing bacteria; and some species of microorganisms involved in nitrogen cycle. Several mechanisms have been identified by which bacteria can induce the calcium carbonate precipitation, including urea hydrolysis, denitrification, sulphate production, and iron reduction. Two different pathways, or autotrophic and heterotrophic pathways, through which calcium carbonate is produced have been identified. There are three autotrophic pathways, which all result in depletion of carbon dioxide and favouring calcium carbonate precipitation. In heterotrophic pathway, two metabolic cycles can be involved: the nitrogen cycle and the sulfur cycle. Several applications of this process have been proposed, such as remediation of cracks and corrosion prevention in concrete, biogrout, sequestration of radionuclides and heavy metals. All three principal kinds of bacteria that are involved in autotrophic production of carbonate obtain carbon from gaseous or dissolved carbon dioxide. These pathways include non-methylotrophic methanogenesis, anoxygenic photosynthesis, and oxygenic photosynthesis. Non-methylotrophic methanogegenesis is carried out by methanogenic archaebacteria, which use CO2 and H2 in anaerobiosis to give CH4. Two separate and often concurrent heterotrophic pathways that lead to calcium carbonate precipitation may occur, including active and passive carbonatogenesis. During active carbonatogenesis, the carbonate particles are produced by ionic exchanges through the cell membrane by activation of calcium and/or magnesium ionic pumps or channels, probably coupled with carbonate ion production. During passive carbonatogenesis, two metabolic cycles can be involved, the nitrogen cycle and the sulfur cycle. Three different pathways can be involved in the nitrogen cycle: ammonification of amino acids, dissimilatory reduction of nitrate, and degradation of urea or uric acid. In sulfur cycle, bacteria follow the dissimilatory reduction of sulfate. The microbial urease catalyzes the hydrolysis of urea into ammonium and carbonate. One mole of urea is hydrolyzed intracellularly to 1 mol of ammonia and 1 mole of Carbamic acid (1), which spontaneously hydrolyzes to form an additional 1 mole of ammonia and carbonic acid (2). CO(NH2)2 + H2O ---> NH2COOH + NH3 (1) NH2COOH + H2O ---> NH3 + H2CO3 (2)

[ "Precipitation (chemistry)", "Precipitation", "Calcium", "Bacteria", "Calcium carbonate" ]
Parent Topic
Child Topic
    No Parent Topic