language-icon Old Web
English
Sign In

Dendroclimatology

Dendroclimatology is the science of determining past climates from trees (primarily properties of the annual tree rings). Tree rings are wider when conditions favor growth, narrower when times are difficult. Other properties of the annual rings, such as maximum latewood density (MXD) have been shown to be better proxies than simple ring width. Using tree rings, scientists have estimated many local climates for hundreds to thousands of years previous. By combining multiple tree-ring studies (sometimes with other climate proxy records), scientists have estimated past regional and global climates. Dendroclimatology is the science of determining past climates from trees (primarily properties of the annual tree rings). Tree rings are wider when conditions favor growth, narrower when times are difficult. Other properties of the annual rings, such as maximum latewood density (MXD) have been shown to be better proxies than simple ring width. Using tree rings, scientists have estimated many local climates for hundreds to thousands of years previous. By combining multiple tree-ring studies (sometimes with other climate proxy records), scientists have estimated past regional and global climates. Tree rings are especially useful as climate proxies in that they can be well-dated via dendrochronology, i.e. matching of the rings from sample to sample. This allows extension backwards in time using deceased tree samples, even using samples from buildings or from archeological digs. Another advantage of tree rings is that they are clearly demarked in annual increments, as opposed to other proxy methods such as boreholes. Furthermore, tree rings respond to multiple climatic effects (temperature, moisture, cloudiness), so that various aspects of climate (not just temperature) can be studied. However, this can be a double-edged sword. Along with the advantages of dendroclimatology are some limitations: confounding factors, geographic coverage, annular resolution, and collection difficulties. The field has developed various methods to partially adjust for these challenges. There are multiple climate and non-climate factors as well as nonlinear effects that impact tree ring width. Methods to isolate single factors (of interest) include botanical studies to calibrate growth influences and sampling of 'limiting stands' (those expected to respond mostly to the variable of interest).

[ "Dendrochronology", "Precipitation", "Climate change", "Chronology" ]
Parent Topic
Child Topic
    No Parent Topic