language-icon Old Web
English
Sign In

Evolutionary arms race

In evolutionary biology, an evolutionary arms race is a struggle between competing sets of co-evolving genes, traits, or species, that develop adaptations and counter-adaptations against each other, resembling an arms race. These are often described as examples of positive feedback. The co-evolving gene sets may be in different species, as in an evolutionary arms race between a predator species and its prey (Vermeij, 1987), or a parasite and its host. Alternatively, the arms race may be between members of the same species, as in the manipulation/sales resistance model of communication (Dawkins & Krebs, 1979) or as in runaway evolution or Red Queen effects. One example of an evolutionary arms race is in sexual conflict between the sexes, often described with the term Fisherian runaway. Thierry Lodé emphasized the role of such antagonistic interactions in evolution leading to character displacements and antagonistic coevolution. In evolutionary biology, an evolutionary arms race is a struggle between competing sets of co-evolving genes, traits, or species, that develop adaptations and counter-adaptations against each other, resembling an arms race. These are often described as examples of positive feedback. The co-evolving gene sets may be in different species, as in an evolutionary arms race between a predator species and its prey (Vermeij, 1987), or a parasite and its host. Alternatively, the arms race may be between members of the same species, as in the manipulation/sales resistance model of communication (Dawkins & Krebs, 1979) or as in runaway evolution or Red Queen effects. One example of an evolutionary arms race is in sexual conflict between the sexes, often described with the term Fisherian runaway. Thierry Lodé emphasized the role of such antagonistic interactions in evolution leading to character displacements and antagonistic coevolution. Arms races may be classified as either symmetrical or asymmetrical. In a symmetrical arms race, selection pressure acts on participants in the same direction. An example of this is trees growing taller as a result of competition for light, where the selective advantage for either species is increased height. An asymmetrical arms race involves contrasting selection pressures, such as the case of cheetahs and gazelles, where cheetahs evolve to be better at hunting and killing while gazelles evolve not to hunt and kill, but rather to evade capture. Selective pressure between two species can include host-parasite coevolution. This antagonistic relationship leads to the necessity for the pathogen to have the best virulent alleles to infect the organism and for the host to have the best resistant alleles to survive parasitism. As a consequence, allele frequencies vary through time depending on the size of virulent and resistant populations (fluctuation of genetic selection pressure) and generation time (mutation rate) where some genotypes are preferentially selected thanks to the individual fitness gain. Genetic change accumulation in both population explains a constant adaptation to have lower fitness costs and avoid extinction in accordance with the Red Queen's hypothesis suggested by Leigh Van Valen in 1973. The Bintje Potato is derived from a cross between Munstersen and Fransen potato varieties. It was created in the Netherlands and now is mainly cultivated in the North of France and Belgium. The oomycete Phytophthora infestans is responsible for the potato blight, in particular during the European famine in 1840. Zoospores (mobile spores, characteristics of oomycetes) are liberated by zoosporangia provided from a mycelium and brought by rain or wind before infecting tubers and leaves. Black colours appear on the plant because of the infection of its cellular system necessary for the multiplication of the oomycete infectious population. The parasite contains virulent-avirulent allelic combinations in several microsatellite loci, likewise the host contains several multiloci resistance genes (or R gene). That interaction is called gene-for-gene relationship and is, in general, widespread in plant diseases. Expression of genetic patterns in the two species is a combination of resistance and virulence characteristics in order to have the best survival rate. Bats have evolved to use echolocation to detect and catch their prey. Moths have in turn evolved to detect the echolocation calls of hunting bats, and evoke evasive flight maneuvers, or reply with their own ultrasonic clicks to confuse the bat's echolocation. The Arctiidae subfamily of Noctuid moths uniquely respond to bat echolocation in three prevailing hypotheses: startle, sonar jamming, and acoustic aposematic defense. All these differences depend on specific environmental settings and the type of echolocation call; however, these hypotheses are not mutually exclusive and can be used by the same moth for defense. The different defense mechanisms have been shown to be directly responsive to bat echolocation through sympatry studies. In places with spatial or temporal isolation between bats and their prey, the moth species hearing mechanism tends to regress. Fullard et al. (2004) compared adventive and endemic Noctiid moth species in a bat-free habitat to ultrasound and found that all of the adventive species reacted to the ultrasound by slowing their flight times, while only one of the endemic species reacted to the ultrasound signal, indicating a loss of hearing over time in the endemic population. However, the degree of loss or regression depends on the amount of evolutionary time and whether or not the moth species has developed secondary uses for hearing. Some bats are known to use clicks at frequencies above or below moths' hearing ranges. This is known as the allotonic frequency hypothesis. It argues that the auditory systems in moths have driven their bat predators to use higher or lower frequency echolocation to circumvent the moth hearing.Barbastelle bats have evolved to use a quieter mode of echolocation, calling at a reduced volume and further reducing the volume of their clicks as they close in on prey moths. The lower volume of clicks reduces the effective successful hunting range, but results in a significantly higher number of moths caught than other, louder bat species. Moths have further evolved the ability to discriminate between high and low echolocation click rates, which indicates whether the bat has just detected their presence or is actively pursuing them. This allows them to decide whether or not defensive ultrasonic clicks are worth the time and energy expenditure. Rough-skinned newts have skin glands that contain a powerful nerve poison, tetrodotoxin, as an anti-predator adaptation. Throughout much of the newt's range, the common garter snake is resistant to the toxin. While in principle the toxin binds to a tube-shaped protein that acts as a sodium channel in the snake's nerve cells, a mutation in several snake populations configures the protein in such a way as to hamper or prevent binding of the toxin, conferring resistance. In turn, resistance creates a selective pressure that favors newts that produce more toxin. That in its turn imposes a selective pressure favoring snakes with mutations conferring even greater resistance. This evolutionary arms race has resulted in the newts producing levels of toxin far in excess of that needed to kill any other predator. In populations where garter snakes and newts live together, higher levels of tetrodotoxin and resistance to it are observed in the two species respectively. Where the species are separated, the toxin levels and resistance are lower. While isolated garter snakes have lower resistance, they still demonstrate an ability to resist low levels of the toxin, suggesting an ancestral predisposition to tetrodotoxin resistance. The lower levels of resistance in separated populations suggest a fitness cost of both toxin production and resistance. Snakes with high levels of tetrodotoxin resistance crawl more slowly than isolated populations of snakes, making them more vulnerable to predation. The same pattern is seen in isolated populations of newts, which have less toxin in their skin. There are geographic hotspots where levels of tetrodotoxin and resistance are extremely high, showing a close interaction between newts and snakes.

[ "Coevolution", "Gene", "Host (biology)" ]
Parent Topic
Child Topic
    No Parent Topic