language-icon Old Web
English
Sign In

PH

In chemistry, pH (/piːˈeɪtʃ/) is a scale used to specify how acidic or basic a water-based solution is. Acidic solutions have a lower pH, while basic solutions have a higher pH. At room temperature (25 °C), pure water is neither acidic nor basic and has a pH of 7. The pH scale is logarithmic and approximates the negative of the base 10 logarithm of the molar concentration (measured in units of moles per liter) of hydrogen ions in a solution. More precisely it is the negative of the base 10 logarithm of the activity of the hydrogen ion. At 25 °C, solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic. The neutral value of the pH depends on the temperature, being lower than 7 if the temperature increases. The pH value can be less than 0 for very strong acids, or greater than 14 for very strong bases. The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. Primary pH standard values are determined using a concentration cell with transference, by measuring the potential difference between a hydrogen electrode and a standard electrode such as the silver chloride electrode. The pH of aqueous solutions can be measured with a glass electrode and a pH meter, or a color-changing indicator. Measurements of pH are important in chemistry, agronomy, medicine, water treatment, and many other applications. The concept of pH was first introduced by the Danish chemist Søren Peder Lauritz Sørensen at the Carlsberg Laboratory in 1909 and revised to the modern pH in 1924 to accommodate definitions and measurements in terms of electrochemical cells. In the first papers, the notation had the 'H' as a subscript to the lowercase 'p', as so: pH. The exact meaning of the 'p' in 'pH' is disputed, as Sørensen did not explain why he used it. He describes a way of measuring it using potential differences, and it represents the negative power of 10 in the concentration of hydrogen ions. All the words for these start with p in French, German and Danish, all languages Sørensen published in: Carlsberg Laboratory was French-speaking, German was the dominant language of scientific publishing, and Sørensen was Danish. He also used 'q' in much the same way elsewhere in the paper. So the 'p' could stand for the French puissance, German Potenz, or Danish potens, meaning 'power', or it could mean 'potential'. He might also just have labelled the test solution 'p' and the reference solution 'q' arbitrarily; these letters are often paired. There is little to support the suggestion that 'pH' stands for the Latin terms pondus hydrogenii (quantity of hydrogen) or potentia hydrogenii (power of hydrogen). Currently in chemistry, the p stands for 'decimal cologarithm of', and is also used in the term pKa, used for acid dissociation constants and pOH, the equivalent for hydroxide ions. Bacteriologist Alice C. Evans, famed for her work's influence on dairying and food safety, credited William Mansfield Clark and colleagues (of whom she was one) with developing pH measuring methods in the 1910s, which had a wide influence on laboratory and industrial use thereafter. In her memoir, she does not mention how much, or how little, Clark and colleagues knew about Sørensen's work a few years prior.:10 She said: The first electronic method for measuring pH was invented by Arnold Orville Beckman, a professor at California Institute of Technology in 1934. It was in response to local citrus grower Sunkist that wanted a better method for quickly testing the pH of lemons they were picking from their nearby orchards.

[ "Quantum complexity theory", "Structural complexity theory" ]
Parent Topic
Child Topic
    No Parent Topic