language-icon Old Web
English
Sign In

Fisheries and climate change

Rising ocean temperatures and ocean acidification are radically altering aquatic ecosystems. Climate change is modifying fish distribution and the productivity of marine and freshwater species. This has impacts on the sustainability of fisheries and aquaculture, on the livelihoods of the communities that depend on fisheries, and on the ability of the oceans to capture and store carbon (biological pump). The effect of sea level rise means that coastal fishing communities are in the front line of climate change, while changing rainfall patterns and water use impact on inland (freshwater) fisheries and aquaculture. The full relationship between fisheries and climate change is difficult to explore due to the context of each fishery and the many pathways that climate change affects. Rising ocean temperatures and ocean acidification are radically altering aquatic ecosystems. Climate change is modifying fish distribution and the productivity of marine and freshwater species. This has impacts on the sustainability of fisheries and aquaculture, on the livelihoods of the communities that depend on fisheries, and on the ability of the oceans to capture and store carbon (biological pump). The effect of sea level rise means that coastal fishing communities are in the front line of climate change, while changing rainfall patterns and water use impact on inland (freshwater) fisheries and aquaculture. The full relationship between fisheries and climate change is difficult to explore due to the context of each fishery and the many pathways that climate change affects. Oceans and coastal ecosystems play an important role in the global carbon cycle and have removed about 25% of the carbon dioxide emitted by human activities between 2000 and 2007 and about half the anthropogenic CO2 released since the start of the Industrial Revolution. Rising ocean temperatures and ocean acidification means that the capacity of the ocean carbon sink will gradually get weaker, giving rise to global concerns expressed in the Monaco and ManadoDeclarations. Healthy ocean ecosystems are essential for the mitigation of climate change. Coral reefs provide habitat for millions of fish species and with no change it can provoke these reefs to die. The rising ocean acidity makes it more difficult for marine organisms such as shrimps, oysters, or corals to form their shells – a process known as calcification. Many important animals, such as zooplankton, that forms the base of the marine food chain have calcium shells. Thus the entire marine food web is being altered – there are ‘cracks in the food chain’. As a result, the distribution, productivity, and species composition of global fish production is changing, generating complex and inter-related impacts on oceans, estuaries, coral reefs, mangroves and sea grass beds that provide habitats and nursery areas for fish. Changing rainfall patterns and water scarcity is impacting on river and lake fisheries and aquaculture production. After the ice age about 200,000 years ago, the global air temperature has risen 3 degrees, leading to an increase in sea temperatures. Fish catch of the global ocean is expected to decline by 6 percent by 2100 and by 11 percent in tropical zones. Diverse models predict that by 2050, the total global fish catch potential may vary by less than 10 percent depending on the trajectory of greenhouse gas emissions, but with very significant geographical variability. Decreases in both marine and terrestrial production in almost 85 percent of coastal countries analysed are predicted, varying widely in their national capacity to adapt. Fish populations of skipjack tuna and bigeye tuna are expected to be displaced further to the east due to the effects of climate change on ocean temperatures and currents. This will shift the fishing grounds toward the Pacific islands and away from its primary owner of Melanesia, disrupting western Pacific canneries, shifting tuna production elsewhere, and having an uncertain effect on food security. Species that are over-fished, such as the variants of Atlantic cod, are more susceptible to the effects of climate change. Over-fished populations have less size, genetic diversity, and age than other populations of fish. This makes them more susceptible to environment related stress, including those resulting from climate change. In the case of Atlantic cod located in the Baltic Sea, which are stressed close to their upper limits, this could lead to consequences related to the population's average size and growth. Due to climate change, the distribution of zooplankton has changed. Cool water cope-pod assemblages have moved north because the waters get warmer, they have been replaced by warm water cope-pods assemblages however it has a lower biomass and certain small species. Atlantic cod require a diet of large cope-pods but because they have moved pole-wards morality rates are high and as a result the recruitment of this cod has plummeted Coastal and fishing populations and countries dependent on fisheries are particularly vulnerable to climate change. Low-lying countries such as the Maldives and Tuvalu are particularly vulnerable and entire communities may become the first climate refugees. Fishing communities in Bangladesh are subject not only to sea-level rise, but also flooding and increased typhoons. Fishing communities along the Mekong river produce over 1 million tons of basa fish annually and livelihoods and fish production will suffer from saltwater intrusion resulting from rising sea level and dams. While climate change increases the effects of human activities, the inverse is also applicable. Human activities also increase the impact of climate change. Human activity has been linked to lake nutrition levels, which high levels are correlated to increasing vulnerability to climate change. Lake Annecy, Lake Geneva, and Lake Bourget were subject to experiments related to their zooplankton. Lake Geneva and Lake Bourget had relatively high levels of nutrients and responded at a significant level towards factors related to climate change, such as weather variability. Lake Annecy had the lowest amount of nutrition levels and responded comparatively poorly.

[ "Ecosystem", "Climate change", "Fisheries management" ]
Parent Topic
Child Topic
    No Parent Topic