language-icon Old Web
English
Sign In

Jacobi elliptic functions

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, that are of historical importance. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of the electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation sn for sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi (1829). In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, that are of historical importance. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of the electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation sn for sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi (1829). There are twelve Jacobi elliptic functions denoted by pq(u,m), where p and q are any of the letters c, s, n, and d. (Functions of the form pp(u,m) are trivially set to unity for notational completeness). u is the argument, and m is the parameter, both of which may be complex. In the complex plane of the argument u, the twelve functions form a repeating lattice of simple poles and zeroes. Depending on the function, one repeating parallelogram, or unit cell, will have sides of length 2K or 4K on the real axis, and 2K' or 4K' on the imaginary axis, where K=K(m) and K'=K(1-m) are known as the quarter periods with K(.) being the elliptic integral of the first kind. The nature of the unit cell can be determined by inspecting the 'auxiliary rectangle' (generally a parallelogram), which is a rectangle formed by the origin (0,0) at one corner, and (K,K') as the diagonally opposite corner. As in the diagram, the four corners of the auxiliary rectangle are named s, c, d, and n, going counter-clockwise from the origin. The function pq(u,m) will have a zero at the 'p' corner and a pole at the 'q' corner. The twelve functions correspond to the twelve ways of arranging these poles and zeroes in the corners of the rectangle. When the argument u and parameter m are real, with 0<m<1, K and K' will be real and the auxiliary parallelogram will in fact be a rectangle, and the Jacobi elliptic functions will all be real valued. Mathematically, Jacobian elliptic functions are doubly periodic meromorphic functions on the complex plane. Since they are doubly periodic, they factor through a torus – in effect, their domain can be taken to be a torus, just as cosine and sine are in effect defined on a circle. Instead of having only one circle, we now have the product of two circles, one real and the other imaginary. The complex plane can be replaced by a complex torus. The circumference of the first circle is 4K and the second 4K′, where K and K′ are the quarter periods. Each function has two zeroes and two poles at opposite positions on the torus. Among the points 0, K, K + iK′, iK′ there is one zero and one pole. The Jacobian elliptic functions are then the unique doubly periodic, meromorphic functions satisfying the following three properties: The elliptic functions can be given in a variety of notations, which can make the subject unnecessarily confusing. Elliptic functions are functions of two variables. The first variable might be given in terms of the amplitude φ, or more commonly, in terms of u given below. The second variable might be given in terms of the parameter m, or as the elliptic modulus k, where k2 = m, or in terms of the modular angle α, where m =  sin2 α. The complements of k and m are defined as m' =1-m and k ′ = m ′ {displaystyle k'={sqrt {m'}}} . These four terms are used below without comment to simplify various expressions. The twelve Jacobi elliptic functions are generally written as pq(u,m) where ‘’p’’ and ‘’q’’ are any of the letters ‘’c’’, ‘’s’’, ‘’n’’, and ‘’d’’. Functions of the form pp(u,m) are trivially set to unity for notational completeness. The “major” functions are generally taken to be cn(u,m), sn(u,m) and dn(u,m) from which all other functions can be derived and expressions are often written solely in terms of these three functions, however, various symmetries and generalizations are often most conveniently expressed using the full set. (This notation is due to Gudermann and Glaisher and is not Jacobi's original notation.)

[ "Nome", "Nonlinear system", "Elliptic curve", "Geometry", "Mathematical analysis", "Elliptic gamma function", "Pendulum (mathematics)", "Half-period ratio", "Carlson symmetric form", "Arithmetic–geometric mean" ]
Parent Topic
Child Topic
    No Parent Topic