language-icon Old Web
English
Sign In

Acyl group

An acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an alkyl group (R-C=O). In organic chemistry, the acyl group (IUPAC name: alkanoyl) is usually derived from a carboxylic acid. Therefore, it has the formula RCO–, where R represents an alkyl group that is linked to the carbon atom of the group by a single bond. Although the term is almost always applied to organic compounds, acyl groups can in principle be derived from other types of acids such as sulfonic acids, phosphonic acids. In the most common arrangement, acyl groups are attached to a larger molecular fragment, in which case the carbon and oxygen atoms are linked by a double bond. An acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an alkyl group (R-C=O). In organic chemistry, the acyl group (IUPAC name: alkanoyl) is usually derived from a carboxylic acid. Therefore, it has the formula RCO–, where R represents an alkyl group that is linked to the carbon atom of the group by a single bond. Although the term is almost always applied to organic compounds, acyl groups can in principle be derived from other types of acids such as sulfonic acids, phosphonic acids. In the most common arrangement, acyl groups are attached to a larger molecular fragment, in which case the carbon and oxygen atoms are linked by a double bond. Well-known acyl compounds are the acyl chlorides, such as acetyl chloride (CH3COCl) and benzoyl chloride (C6H5COCl). These compounds, which are treated as sources of acylium cations, are good reagents for attaching acyl groups to various substrates. Amides (RC(O)NR2) and esters (RC(O)OR′) are classes of acyl compounds, as are ketones (RC(O)R) and aldehydes (RC(O)H). Acylium ions are cations of the formula RCO+. Such species are common reactive intermediates, for example, in the Friedel–Crafts acylations also in many other organic reactions such as the Hayashi rearrangement. Salts containing acylium ions can be generated by removal of the halide from acyl halides: The carbon–oxygen bond length in these cations is near 1.1 Ångströms, even shorter than that in carbon monoxide and indicative of triple bond character. The carbon centre of acylium ions generally have a linear geometry and sp atomic hybridization, and are best represented by a resonance structure bearing a formal positive charge on the oxygen (rather than carbon): . They are characteristic fragments observed in EI-mass spectra of ketones. Acyl radicals are readily generated from aldehydes by hydrogen-atom abstraction. However, they undergo rapid decarbonylation to afford the alkyl radical: Acyl anions are almost always unstable—usually too unstable to be exploited synthetically. They readily dimerise to form enediols. Hence, synthetic chemists have developed various acyl anion synthetic equivalents, such as dithianes, as surrogates. However, as a partial exception, hindered dialkylformamides (e.g., HCONiPr2) can undergo deprotonation at low temperature (−78 °C) with lithium diisopropylamide as the base to form a carbamoyl anion stable at these temperatures. In biochemistry there are many instances of acyl groups, in all major categories of biochemical molecules. Acyl-CoAs are acyl derivatives formed via fatty acid metabolism. Acetyl-CoA, the most common derivative, serves as an acyl donor in many biosynthetic transformations. Such acyl compounds are thioesters. Names of acyl groups of amino acids are formed by the replacement of the ending -ine by the ending -yl. For example, the acyl group of glycine is glycyl, and of lysine is lysyl.

[ "Hydrogen atom", "Alkyl", "group", "Dysfunction brain" ]
Parent Topic
Child Topic
    No Parent Topic