In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson (1962, 1963).William Burnside (1911, p. 503 note M) In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson (1962, 1963). William Burnside (1911, p. 503 note M) conjectured that every nonabelian finite simple group has even order. Richard Brauer (1957) suggested using the centralizers of involutions of simple groups as the basis for the classification of finite simple groups, as the Brauer–Fowler theorem shows that there are only a finite number of finite simple groups with given centralizer of an involution. A group of odd order has no involutions, so to carry out Brauer's program it is first necessary to show that non-cyclic finite simple groups never have odd order. This is equivalent to showing that odd order groups are solvable, which is what Feit and Thompson proved. The attack on Burnside's conjecture was started by Michio Suzuki (1957), who studied CA groups; these are groups such that the Centralizer of every non-trivial element is Abelian. In a pioneering paper he showed that all CA groups of odd order are solvable. (He later classified all the simple CA groups, and more generally all simple groups such that the centralizer of any involution has a normal 2-Sylow subgroup, finding an overlooked family of simple groups of Lie type in the process, that are now called Suzuki groups.) Feit, Marshall Hall, and Thompson (1960) extended Suzuki's work to the family of CN groups; these are groups such that the Centralizer of every non-trivial element is Nilpotent. They showed that every CN group of odd order is solvable. Their proof is similar to Suzuki's proof. It was about 17 pages long, which at the time was thought to be very long for a proof in group theory. The Feit–Thompson theorem can be thought of as the next step in this process: they show that there is no non-cyclic simple group of odd order such that every proper subgroup is solvable. This proves that every finite group of odd order is solvable, as a minimal counterexample must be a simple group such that every proper subgroup is solvable. Although the proof follows the same general outline as the CA theorem and the CN theorem, the details are vastly more complicated. The final paper is 255 pages long. The Feit–Thompson theorem showed that the classification of finite simple groups using centralizers of involutions might be possible, as every nonabelian simple group has an involution. Many of the techniques they introduced in their proof, especially the idea of local analysis, were developed further into tools used in the classification. Perhaps the most revolutionary aspect of the proof was its length: before the Feit–Thompson paper, few arguments in group theory were more than a few pages long and most could be read in a day. Once group theorists realized that such long arguments could work, a series of papers that were several hundred pages long started to appear. Some of these dwarfed even the Feit–Thompson paper; the paper by Michael Aschbacher and Stephen D. Smith on quasithin groups was 1,221 pages long.