language-icon Old Web
English
Sign In

Binary collision approximation

The binary collision approximation (BCA) signifies a method used in ion irradiation physics to enable efficient computer simulation of the penetration depth and defect production by energetic (with kinetic energies in the kilo-electronvolt (keV) range or higher) ions in solids. In the method, the ion is approximated to travel through a material by experiencing a sequence of independent binary collisions with sample atoms (nuclei). Between the collisions, the ion is assumed to travel in a straight path, experiencing electronic stopping power, but losing no energy in collisions with nuclei. The binary collision approximation (BCA) signifies a method used in ion irradiation physics to enable efficient computer simulation of the penetration depth and defect production by energetic (with kinetic energies in the kilo-electronvolt (keV) range or higher) ions in solids. In the method, the ion is approximated to travel through a material by experiencing a sequence of independent binary collisions with sample atoms (nuclei). Between the collisions, the ion is assumed to travel in a straight path, experiencing electronic stopping power, but losing no energy in collisions with nuclei. In the BCA approach, a single collision between the incoming ion and a target atom (nucleus) is treated by solving the classical scattering integral between two colliding particles for the impact parameter of the incoming ion. Solution of the integral gives the scattering angle of theion as well as its energy loss to the sample atoms, and hence what the energy is after the collision compared to before it.The scattering integral is defined in the centre-of-mass coordinate system (two particles reduced to one single particle with one interatomic potential) and relates the angle of scatter with the interatomic potential.

[ "Monte Carlo method", "Molecular dynamics", "Collision", "Ion", "Atom" ]
Parent Topic
Child Topic
    No Parent Topic