language-icon Old Web
English
Sign In

Astronomical seeing

Astronomical seeing refers to the amount of apparent blurring and twinkling of astronomical objects like stars due to turbulent mixing in the atmosphere of Earth, causing variations of the optical refractive index. The seeing conditions on a given night at a given location describe how much Earth's atmosphere perturbs the images of stars as seen through a telescope.Slow motion movie of the image seen at a telescope when looking at a star at high magnification (negative images). The telescope used had a diameter of about 7r0 (see definition of r0 below, and example simulated image through a 7r0 telescope). The star breaks up into multiple blobs (speckles) -- entirely an atmospheric effect. Some telescope vibration is also noticeable. Astronomical seeing refers to the amount of apparent blurring and twinkling of astronomical objects like stars due to turbulent mixing in the atmosphere of Earth, causing variations of the optical refractive index. The seeing conditions on a given night at a given location describe how much Earth's atmosphere perturbs the images of stars as seen through a telescope. The most common seeing measurement is the full width at half maximum (FWHM) of the optical intensity across the seeing disc (the point spread function for imaging through the atmosphere). The FWHM of the point spread function (loosely called seeing disc diameter or 'seeing') is the best possible angular resolution that can be achieved by an optical telescope in a long-exposure image, and corresponds to the FWHM of the fuzzy blob seen when observing a point-like source (such as a star) through the atmosphere. The size of the seeing disc is determined by the seeing conditions at the time of the observation. The best conditions give a seeing disk diameter of ~0.4 arcseconds and are found at high-altitude observatories on small islands such as Mauna Kea or La Palma. Seeing is one of the biggest problems for Earth-based astronomy. While large telescopes have theoretically milli-arcsecond resolution, the real image is limited to the average seeing disc during the observation. This can easily mean a factor of 100 between the potential and practical resolution. Starting in the 1990s, new adaptive optics have been introduced that can help correct for these effects, dramatically improving the resolution of ground-based telescopes.

[ "Sextant (astronomical)", "Adaptive optics", "Turbulence", "Telescope" ]
Parent Topic
Child Topic
    No Parent Topic