language-icon Old Web
English
Sign In

Gas to liquids

Gas to liquids (GTL) is a refinery process to convert natural gas or other gaseous hydrocarbons into longer-chain hydrocarbons, such as gasoline or diesel fuel. Methane-rich gases are converted into liquid synthetic fuels. Two general strategies exist: (i) direct partial combustion of methane to methanol and (ii) Fischer–Tropsch-like processes that convert carbon monoxide and hydrogen into hydrocarbons. Strategy ii is followed by diverse methods to convert the hydrogen-carbon monoxide mixtures to liquids. Direct partial combustion has been demonstrated in nature but not replicated commercially. Technologies reliant on partial combustion have been commercialized mainly in regions where natural gas is inexpensive. Gas to liquids (GTL) is a refinery process to convert natural gas or other gaseous hydrocarbons into longer-chain hydrocarbons, such as gasoline or diesel fuel. Methane-rich gases are converted into liquid synthetic fuels. Two general strategies exist: (i) direct partial combustion of methane to methanol and (ii) Fischer–Tropsch-like processes that convert carbon monoxide and hydrogen into hydrocarbons. Strategy ii is followed by diverse methods to convert the hydrogen-carbon monoxide mixtures to liquids. Direct partial combustion has been demonstrated in nature but not replicated commercially. Technologies reliant on partial combustion have been commercialized mainly in regions where natural gas is inexpensive. The motivation for GTL is to produce liquid fuels, which are more readily transported than methane. Methane must be cooled below its critical temperature of -82.3 °C in order to be liquified under pressure. Because of the associated cryogenic apparatus, LNG tankers are used for transport. Methanol is a conveniently handled combustible liquid, but its energy density is half of that of gasoline. The Fischer–Tropsch process starts with partial oxidation of methane (natural gas) to carbon dioxide, carbon monoxide, hydrogen gas and water. The ratio of carbon monoxide to hydrogen is adjusted using the water gas shift reaction, while the excess carbon dioxide is removed. Removing the water yields synthesis gas (syngas). Syngas is allowed to react over an iron or cobalt catalyst to produce liquid hydrocarbons, including alcohols. Methanol is made from methane (natural gas) in a series of three reactions: The methanol thus formed may be converted to gasoline by the Mobil process and methanol-to-olefins. In the early 1970s, Mobil developed an alternative procedure in which natural gas is converted to syngas, and then methanol. The methanol reacts in the presence of a zeolite catalyst to form alkanes. In terms of mechanism, methanol is partially dehydrated to give dimethyl ether: The mixture of dimethyl ether and methanol is then further dehydrated over a zeolite catalyst such as ZSM-5, which in practice is polymerized and hydrogenated to give a gasoline with hydrocarbons of five or more carbon atoms making up 80% of the fuel by weight. The Mobile MTG process is no longer practiced. A more modern implementation of MTG is the Topsøe integrated gasoline synthesis (TIGS). Methanol can be converted to olefins using zeolite and SAPO-based heterogeneous catalysts. Depending on the catalyst pore size, this process can afford either C2 or C3 products, which are important monomers. A third gas-to-liquids process builds on the MTG technology by converting natural gas-derived syngas into drop-in gasoline and jet fuel via a thermochemical single-loop process.

[ "Chemical engineering", "Petroleum engineering", "Syngas", "Waste management", "Organic chemistry", "Pearl GTL", "Oryx GTL" ]
Parent Topic
Child Topic
    No Parent Topic