language-icon Old Web
English
Sign In

Second moment of area

The 2nd moment of area, also known as the area moment of inertia, or second area moment, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The second moment of area is typically denoted with either an I {displaystyle I} for an axis that lies in the plane or with a J {displaystyle J} for an axis perpendicular to the plane. In both cases, it is calculated with a multiple integral over the object in question. Its dimension is L (length) to the fourth power. Its unit of dimension when working with the International System of Units is meters to the fourth power, m4, or inches to the fourth power, in4, when working in the Imperial System of Units. In structural engineering, the second moment of area of a beam is an important property used in the calculation of the beam's deflection and the calculation of stress caused by a moment applied to the beam. In order to maximize the second moment of area, a large fraction of the cross-sectional area of an I-beam is located at the maximum possible distance from the centroid of the I-beam's cross-section. The planar second moment of area provides insight into a beam's resistance to bending due to an applied moment, force, or distributed load perpendicular to its neutral axis, as a function of its shape. The polar second moment of area provides insight into a beam's resistance to torsional deflection, due to an applied moment parallel to its cross-section, as a function of its shape. The second moment of area for an arbitrary shape R with respect to an arbitrary axis B B ′ {displaystyle BB'} is defined as

[ "Geometry", "Thermodynamics", "Mathematical analysis" ]
Parent Topic
Child Topic
    No Parent Topic