language-icon Old Web
English
Sign In

Pedogenesis

Pedogenesis (from the Greek pedo-, or pedon, meaning 'soil, earth,' and genesis, meaning 'origin, birth') (also termed soil development, soil evolution, soil formation, and soil genesis) is the process of soil formation as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations lead to the development of layers, termed soil horizons, distinguished by differences in color, structure, texture, and chemistry. These features occur in patterns of soil type distribution, forming in response to differences in soil forming factors. Pedogenesis (from the Greek pedo-, or pedon, meaning 'soil, earth,' and genesis, meaning 'origin, birth') (also termed soil development, soil evolution, soil formation, and soil genesis) is the process of soil formation as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations lead to the development of layers, termed soil horizons, distinguished by differences in color, structure, texture, and chemistry. These features occur in patterns of soil type distribution, forming in response to differences in soil forming factors. Pedogenesis is studied as a branch of pedology, the study of soil in its natural environment. Other branches of pedology are the study of soil morphology, and soil classification. The study of pedogenesis is important to understanding soil distribution patterns in current (soil geography) and past (paleopedology) geologic periods. Soil develops through a series of changes. The starting point is weathering of freshly accumulated parent material. Primitive microbes feed on simple compounds (nutrients) released by weathering, and produce acids which contribute to weathering. They also leave behind organic residues. New soils increase in depth by a combination of weathering, and further deposition. An estimated 1/10 mm per year rate of soil production from weathering fits observations rates. New soils can also deepen from dust deposition. Gradually soil is able to support higher forms of plants and animals, starting with pioneer species, and proceeding to more complex plant and animal communities. Soils deepen with accumulation of humus primarily due to the activities of higher plants. Topsoils deepen through soil mixing. As soils mature, they develop layers as organic matter accumulates and leaching takes place. This development of layers is the beginning of the soil profile. Russian geologist Vasily Dokuchaev (1889), commonly regarded as the father of pedology, determined in 1883 that soil formation occurs over time under the influence of climate, vegetation, topography, and parent material. He demonstrated this in 1898 using the soil forming equation: (where cl or c = climate, o = organisms, p = biological processes) tr = relative time (young, mature, old) Clorpt is a mnemonic for American soil scientist Hans Jenny's state equation for the factors influencing soil formation: Published in 1941, Jenny's state equation in Factors of Soil Formation differs from the Vasily Dokuchaev equation, treating time (t) as a factor, adding topographic relief (r), and pointedly leaving the ellipsis 'open' for more factors (state variables) to be added as our understanding becomes more refined. There are two principal methods that the state equation may be solved: first in a theoretical or conceptual manner by logical deductions from certain premises, and second empirically by experimentation or field observation. The empirical method is still mostly employed today, and soil formation can be defined by varying a single factor and keeping the other factors constant. This led to the development of empirical models to describe pedogenesis, such as climofunctions, biofunctions, topofunctions, lithofunctions, and chronofunctions. Since Hans Jenny published his formulation in 1941, it has been used by innumerable soil surveyors all over the world as a qualitative list for understanding the factors that may be important for producing the soil pattern within a region.

[ "Soil water", "Cutans", "Soil production function", "Illuvium", "Plinthite", "Petrocalcic Horizon" ]
Parent Topic
Child Topic
    No Parent Topic