language-icon Old Web
English
Sign In

Strontianite

Strontianite (SrCO3) is an important raw material for the extraction of strontium. It is a rare carbonate mineral and one of only a few strontium minerals. It is a member of the aragonite group. Strontianite (SrCO3) is an important raw material for the extraction of strontium. It is a rare carbonate mineral and one of only a few strontium minerals. It is a member of the aragonite group. Aragonite group members: aragonite (CaCO3), witherite (BaCO3), strontianite (SrCO3), cerussite (PbCO3) The ideal formula of strontianite is SrCO3, with molar mass 147.63 g, but calcium (Ca) can substitute for up to 27% of the strontium (Sr) cations, and barium (Ba) up to 3.3%. The mineral was named in 1791 for the locality, Strontian, Argyllshire, Scotland, where the element strontium had been discovered the previous year. Although good mineral specimens of strontianite are rare, strontium is a fairly common element, with abundance in the Earth's crust of 370 parts per million by weight, 87 parts per million by moles, much more common than copper with only 60 parts per million by weight, 19 by moles. Strontium is never found free in nature. The principal strontium ores are celestine SrSO4 and strontianite SrCO3. The main commercial process for strontium metal production is reduction of strontium oxide with aluminium. Strontianite is an orthorhombic mineral, belonging to the most symmetrical class in this system, 2/m 2/m 2/m, whose general form is a rhombic dipyramid. The space group is Pmcn. There are four formula units per unit cell (Z = 4) and the unit cell parameters are a = 5.1 Å, b = 8.4 Å, c = 6.0 Å. Strontianite is isostructural with aragonite. When the CO3 group is combined with large divalent cations with ionic radii greater than 1.0 Å, the radius ratios generally do not permit stable 6-fold coordination. For small cations the structure is rhombohedral, but for large cations it is orthorhombic. This is the aragonite structure type with space group Pmcn. In this structure the CO3 groups lie perpendicular to the c axis, in two structural planes, with the CO3 triangular groups of one plane pointing in opposite directions to those of the other. These layers are separated by layers of cations. The CO3 group is slightly non-planar; the carbon atom lies 0.007 Å out of the plane of the oxygen atoms. The groups are tilted such that the angle between a plane drawn through the oxygen atoms and a plane parallel to the a-b unit cell plane is 2°40’. Strontianite occurs in several different habits. Crystals are short prismatic parallel to the c axis and often acicular. Calcium-rich varieties often show steep pyramidal forms. Crystals may be pseudo hexagonal due to equal development of different forms. Prism faces are striated horizontally. The mineral also occurs as columnar to fibrous, granular or rounded masses. Strontianite is colourless, white, gray, light yellow, green or brown, colourless in transmitted light. It may be longitudinally zoned. It is transparent to translucent, with a vitreous (glassy) lustre, resinous on broken surfaces, and a white streak.

[ "Strontium", "Aragonite" ]
Parent Topic
Child Topic
    No Parent Topic