language-icon Old Web
English
Sign In

Stereoscopic acuity

Stereoscopic acuity, also stereoacuity, is the smallest detectable depth difference that can be seen in binocular vision. Stereoscopic acuity, also stereoacuity, is the smallest detectable depth difference that can be seen in binocular vision. Stereoacuity is most simply explained by considering one of its earliest test, a two-peg device, named Howard-Dolman test after its inventors: The observer is shown a black peg at a distance of 6m (=20 feet). A second peg, below it, can be moved back and forth until it is just detectably nearer than the fixed one. Stereoacuity is this difference in the two positions, converted into an angle of binocular disparity, i.e., the difference in their binocular parallax. Conversion to the angle of disparity dγ is performed by inserting the position difference dz in the formula where a is the interocular separation of the observer and z the distance of the fixed peg from the eye. To transfer dγ into the usual unit of minutes of arc, a multiplicative constant c is inserted whose value is 3437.75 (1 radian in arcminutes). In the calculation a, dz and z must be in the same units, say, feet, inches, cm or meters. For the average interocular distance of 6.5 cm, a target distance of 6m and a typical stereoacuity of 0.5 minute of arc, the just detectable depth interval is 8 cm. As targets come closer, this interval gets smaller by the inverse square of the distance, so that an equivalent detectable depth interval at ¼ meter is 0.01 cm or the depth of impression of the head on a coin. These very small values of normal stereoacuity, expressed in differences of either object distances, or angle of disparity, makes it a hyperacuity. Since the Howard-Dolman test described above is cumbersome, stereoacuity is usually measured using a stereogram in which separate panels are shown to each eye by superimposing them in a stereoscope using prisms or goggles with color or polarizing filters or alternating occlusion (for a review see ). A good procedure is a chart, analogous to the familiar Snellen visual acuity chart, in which one letter in each row differs in depth (front or behind) sequentially increasing in difficulty. For children the fly test is ideal: the image of a fly is transilluminated by polarized light; wearing polarizing glasses the wing appears at a different depth and allows stereopsis to be demonstrated by trying to pull on it.

[ "Stereopsis", "Visual acuity", "Binocular vision", "Titmus stereo test", "Worth 4 dot test", "Bagolini test", "Stereotests", "Abnormal stereopsis" ]
Parent Topic
Child Topic
    No Parent Topic