language-icon Old Web
English
Sign In

Satellite temperature measurements

Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites.Global Trend (70S - 82.5N)(K/decade) Global Trend(90S - 90N) (K/decade)Global Trend(K/decade)Global Trend (ºK/decade)Global Trend (ºK/decade)'In the tropics, surface temperature changes are amplified in the free troposphere. Models and observations show similar amplification behavior for monthly and interannual temperature variations, but not for decadal temperature changes. Tropospheric amplification of surface temperature anomalies is due to the release of latent heat by moist, rising air in regions experiencing convection.' Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites. Weather satellites do not measure temperature directly. They measure radiances in various wavelength bands. Since 1978 microwave sounding units (MSUs) on National Oceanic and Atmospheric Administration polar orbiting satellites have measured the intensity of upwelling microwave radiation from atmospheric oxygen, which is related to the temperature of broad vertical layers of the atmosphere. Measurements of infrared radiation pertaining to sea surface temperature have been collected since 1967. Satellite datasets show that over the past four decades the troposphere has warmed and the stratosphere has cooled. Both of these trends are consistent with the influence of increasing atmospheric concentrations of greenhouse gases. Satellites do not measure temperature. They measure radiances in various wavelength bands, which must then be mathematically inverted to obtain indirect inferences of temperature. The resulting temperature profiles depend on details of the methods that are used to obtain temperatures from radiances. As a result, different groups that have analyzed the satellite data have produced differing temperature datasets. Among these are the UAH dataset prepared at the University of Alabama in Huntsville and the RSS dataset prepared by Remote Sensing Systems. The satellite time series is not homogeneous. It is constructed from a series of satellites with similar but not identical sensors. The sensors also deteriorate over time, and corrections are necessary for orbital drift and decay. Particularly large differences between reconstructed temperature series occur at the few times when there is little temporal overlap between successive satellites, making intercalibration difficult. Satellites may also be used to retrieve surface temperatures in cloud-free conditions, generally via measurement of thermal infrared from AVHRR. Weather satellites have been available to infer sea surface temperature (SST) information since 1967, with the first global composites occurring during 1970. Since 1982, satellites have been increasingly utilized to measure SST and have allowed its spatial and temporal variation to be viewed more fully. For example, changes in SST monitored via satellite have been used to document the progression of the El Niño-Southern Oscillation since the 1970s. Over the land the retrieval of temperature from radiances is harder, because of the inhomogeneities in the surface. Studies have been conducted on the urban heat island effect via satellite imagery. Use of advanced very high resolution infrared satellite imagery can be used, in the absence of cloudiness, to detect density discontinuities (weather fronts) such as cold fronts at ground level. Using the Dvorak technique, infrared satellite imagery can be used to determine the temperature difference between the eye and the cloud top temperature of the central dense overcast of mature tropical cyclones to estimate their maximum sustained winds and their minimum central pressures. Along Track Scanning Radiometers aboard weather satellites are able to detect wildfires, which show up at night as pixels with a greater temperature than 308 K (95 °F). The Moderate-Resolution Imaging Spectroradiometer aboard the Terra satellite can detect thermal hot spots associated with wildfires, volcanoes, and industrial hot spots. From 1979 to 2005 the microwave sounding units (MSUs) and since 1998 the Advanced Microwave Sounding Units on NOAA polar orbiting satellites have measured the intensity of upwelling microwave radiation from atmospheric oxygen. The intensity is proportional to the temperature of broad vertical layers of the atmosphere, as demonstrated by theory and direct comparisons with atmospheric temperatures from radiosonde (balloon) profiles. Upwelling radiance is measured at different frequencies; these different frequency bands sample a different weighted range of the atmosphere. The brightness temperature (TB) measured by satellite is given by: T B = W ( 0 ) T ( 0 ) + ∫ 0 T O A W ( z ) T ( z ) d z {displaystyle T_{B}=W(0)T(0)+int limits _{0}^{TOA}W(z)T(z),dz} where W ( 0 ) {displaystyle W(0)} is the surface weight, T ( 0 ) {displaystyle T(0)} and T ( z ) {displaystyle T(z)} are the temperatures at the surface and at the atmospheric level z {displaystyle z} and W ( z ) {displaystyle W(z)} is the atmospheric weighting function.

[ "Troposphere", "Advanced Microwave Sounding Unit", "Atmospheric sounding", "Stratosphere" ]
Parent Topic
Child Topic
    No Parent Topic